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Abstract

With the rapid increase in computing power Quantum Chemists are looking towards

larger and larger molecules� This thesis presents new ways to reduce the expensive scaling

of computational cost with system size� thus allowing the advances in computer science to

be utilized� The �rst chapter is an introduction to Hartree
Fock theory and the traditional

methods of calculating electron correlation� This is followed by an introduction to Density

Functional Theory� concentrating on Kohn
Sham density functional theory�

Chapter � presents a new way of assessing the accuracy of a density functional by parti


tioning the density and examining the energy of the component pieces� Chapter � describes a

new density functional �EDF�
� designed especially for small basis sets� thus making it ideal

for large systems� The functional is formed from several other common functionals� grouped

together in a way to minimize the error of the chemical energetics of a selection of molecules�

Chapter � gives an introduction to modern two
electron integral theory and then describes

a new method for e�ciently calculating integrals arising from charges that are well separated�

The new algorithm does not scale with the contraction of the basis set�

The e�cient algorithm of Chapter � is O�N�
 overall� and therefore still too slow� To truly

examine large molecules O�N
 methods are required� Chapter � provides an introduction

to these linear methods and also presents a new method� the CASE approximation� which

neglects long
range interactions� How to implement this new method �in O�N
 work
 is

described in Chapter �� The method is extended to density functional theory in Chapter

� by attenuating the Dirac functional� Chapter � presents a second way to reduce the

magnitude �and speed
 of the approximation� and also a correction for the main failure of

the original approximation� Chapter �� examines the accuracy of the approximation on a

variety of chemical properties� The �nal chapter describes a way to improve the accuracy of

CASE by correcting for the neglected terms in only O�N
 work� This correction however is

not without its own problems and work continues in this area�
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Chapter �

Introduction

�I think it is true to say that nobody understands quantum mechanics	 
 Richard

Feynman

��� The Schr�odinger Equation

It can be argued that the �eld of quantum chemistry began in ����� with de Broglie�s

postulate that electrons possess both wave
like and particle
like characteristics ���� Later in

����� Davisson and Germer ��� con�rmed de Broglie�s conjecture experimentally by producing

a di�raction pattern of electrons consistent with the de Broglie relation� Schr�odinger then

expanded on de Broglie�s work� forming the non
relativistic Schr�odinger wave equation ����

a mathematical model powerful enough to describe all non
relativistic chemical phenomena�

This idea was not fully understood� however� until Heisenberg introduced the Uncertainty

Principle �that it is impossible to specify both the linear momentum and position of a particle

to arbitrary precision
 ����

The time
dependent Schr�odinger equation is

�H� � i�h
��

�t
� ����


where �H is the Hamiltonian operator� representing all energy contributions of the system�

The wavefunction� �� is a function of the nuclear and electron positions� electron spins and

time� It is easiest viewed using the Born interpretation ����

The probability that a system� described by �� will be found in a given state is

proportional to ����
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This interpretation generates a constraint that the wavefunction must be square integrable�

that is Z
j�j� d� ��� ����


If we consider a system of M nuclei �each of charge ZA
 and N electrons in the absence

of any external �eld� the Hamiltonian� in atomic units� is given by

�H � �T � �V � ����


where

�T � ��

�

MX
A

r�
A �

�

�

NX
i

r�
i � ����


representing the kinetic energy of the nuclei and electrons respectively� and

�V � �
MX
A

NX
i

ZA
jRA � rij �

MX
A

MX
B�A

ZAZB
jRA �RB j �

NX
i

NX
j�i

�

jri � rj j � ����


describing the potentials due to nuclear
electron attraction� nuclear
nuclear repulsion and

electron
electron repulsion�

The Hamiltonian above is independent of time� which allows a separation of variables�

The wavefunction can then be of the form

��t
 � �e
�iEt
�h ����


where � does not depend on time� and the Schr�odinger equation reduces to

�H� � E�� ����


also independent of time� This is an important result� if the potential is independent of time

and the system is in a state of energy E� all that is required to construct the time
dependent

wavefunction from the time
independent wavefunction is multiplication by e�iEt��h� which is

simply a modulation of its phase�

��� The Born�Oppenheimer Approximation

Perhaps the great disappointment of quantum chemistry is that� whilst the Schr�odinger

equation is powerful enough to describe almost all chemistry� it is too complex to solve for

all but the simplest of systems� Even the simplest molecule� H�
� � consists of three particles�
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thus producing a Schr�odinger equation that is impossible to solve analytically� To overcome

this di�culty a variety of approximations are made� the most common of which is the Born


Oppenheimer approximation ����

The masses of the nuclei are much greater than the electrons� hence the electrons can

respond almost instantaneously to any change in the nuclear positions� Thus� to a good

approximation� we can think of the electrons as moving in a �eld of �xed nuclei� Within

this approximation� the nuclear kinetic energy term can be neglected and the nuclear
nuclear

repulsion term can be considered a constant� These two terms can therefore be removed� to

form the electronic Hamiltonian� �Helec�

What remains is termed the electronic Schr�odinger equation�

�Helec �elec�ri RA
 � Eelec�RA
 �elec�ri RA
� ����


The notation �elec�ri RA
 implies that the electronic wavefunction depends on the nuclear

positions only parametrically ! a di�erent wavefunction is de�ned for each nuclear con�gu


ration�

Eelec�RA
 is only the electronic energy to regain the total energy �for �xed nuclei
 we

must add the nuclear
nuclear repulsion constant�

Etot � Eelec �

MX
A

MX
B�A

ZAZB
jRA �RB j ����


Repeating the calculation with a di�erent nuclear arrangement allows the potential energy

surface to be mapped out and the equilibrium geometry to be found� The work of this

thesis is entirely within the Born
Oppenheimer approximation� so for clarity� the "tot� and

"elec� subscripts will be dropped and only electronic Hamiltonians and wavefunctions will be

considered�

��� The Hartree Approximation

Although the Born
Oppenheimer approximation considerably reduces the complexity of

the Schr�odinger equation� the resulting electronic Schr�odinger equation is still extremely

complex� due to the electron
electron interactions� It is possible to use wavefunctions which

explicitly include inter
electronic distance ��#��� but this approach is computationally infea


sible for all but the smallest systems�

�A constant added to an operator does not a�ect the wavefunction� it only adds to the operator eigenvalue�
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A more satisfying solution is to introduce the molecular orbital approximation� the sim


plest of which is the independent
particle� or Hartree� approximation ���#��� wherein the

total wavefunction is approximated by a product of orthonormal molecular orbitals �MOs
�

This idea closely follows the chemists� view of electrons occupying orbitals� The Hartree

approximation assumes that each electron moves independently within its own orbital and

sees only the average �eld generated by all the other electrons� The Hartree wavefunction

�for an N electron system
 is

� � ���x�
���x�
 � � � �N���xN��
�N �xN 
� �����


where each �i is a spin orbital containing one electron� The �i are orthonormal� consisting

of a spatial orbital� �i�r
� and one of two spin functions� ��s
 and ��s
� representing spin up

and spin down states� x is the space
spin coordinate� containing both the position� r� and

spin� s� of a particle�

��� The Variational Method

By rearranging equation ����
 it is possible to obtain an expression for the energy� Eapp�

associated with an approximate wavefunction� �app�

Eapp �

R
��
app

�H�app d�R
��
app�app d�

�
h�appj �H j�appi
h�appj�appi �����


This approximate wavefunction can also be written as a linear combination of the exact

eigenstates of �H�

�app �
X
i

ci�i� �����


Now� consider the integralZ
��
app� �H �E�
�app d� �

X
i

X
i�

c�i ci�

Z
��
i � �H �E�
�i� d�

�
X
i

X
i�

c�i ci��Ei� �E�


Z
��
i�i� d�

�
X
i

c�i ci�Ei �E�
 � �

�����


as jcij� � � and Ei � E�� Therefore�Z
��
app� �H �E�
�app d� � �� �����
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from which follows the Variational Principle� that Eapp � E�� This also gives insight into

how to �nd the best approximate wavefunction� as

Eapp � E� �� �app � ��� �����


Hence� minimization of Eapp with respect to all allowed �app will give the exact ground state

energy and wavefunction� Unfortunately� this is not practical and what is usually done is to

expand the molecular orbitals as linear combinations of basis functions�

�i �
X
�

c�i	�� �����


reducing the problem to �nding the optimum set of coe�cients� c�i� which minimize Eapp�

something which can be achieved via matrix diagonalisation �see section ���
� Obviously�

the set of functions 	� cannot be complete and so an approximation has been made� The

number and type of functions chosen has a large e�ect on the overall accuracy �and speed


of a calculation� Some of the more common functions used will be given in the section on

Basis Sets �section ���
�

��� Hartree�Fock Theory

In ���� Fock ���� pointed out that the Hartree wavefunction was invalid as it did not

satisfy the Pauli Exclusion Principle ! that the wavefunction must be antisymmetric with

respect to electron interchange ����� Fock also showed that a Hartree product could be

made antisymmetric by appropriately adding and subtracting all possible permutations of

the Hartree product� thereby forming the Hartree
Fock �HF
 wavefunction� Later� Slater

showed that the resulting wavefunction is simply the determinant of a matrix� called a Slater

determinant ���� ���

� �
�p
N $

������������

���x�
 ���x�
 � � � �N �x�


���x�
 ���x�
 � � � �N �x�

���

���
���

���xN 
 ���xN 
 � � � �N �xN 


������������
� �����


The prefactor normalizes the HF wavefunction �remembering that the �i are orthonormal
�
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����� Matrix Elements and Notation

Before presenting the HF equations it is useful to de�ne some matrix elements common

to quantum chemistry� The overlap matrix� S� represents the overlap of basis functions

S�� �

Z
	��r
	��r
 dr� �����


A familiar concept to chemists is the electron density� 
�r
� which can be obtained by

integrating the square of the wavefunction over all N electrons but one� and all spin variables�


�r
 � N

Z
�� ds� dx� dx� � � � dxN �����


which is simply the square of the sum over all the occupied orbitals�


�r
 �

occX
i

�i�r
�
�
i �r


�
X
�

X
�

�
occX
i

C�iC�i

�
	��r
	��r
�

�����


The bracketed term is frequently required in solving the HF equations� and hence is usually

precomputed and stored as the density matrix� P

P�� �

occX
i

C�iC�i� �����


The one
electron operators are also used to form their own matrices� T and V�

T�� �

Z
	��r


�
��

�
r�

�
	��r
 dr �����


V�� �

Z
	��r


�
�
X
A

ZA
jRA � rj

�
	��r
 dr� �����


These two matrices are added together to form the core Hamiltonian matrix� H� where H��

represents the energy of an isolated electron in the distribution 	�	� �

The repulsion between an electron in the MO distribution �i�j and the MO distribution

�k�l has a shorthand notation�

�ijjkl
 �

ZZ
��i �r�
�j�r�
�

�
k�r�
�l�r�


r��
dr�dr�� �����


where

r�� � jr� � r�j� �����
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This shorthand also exists for repulsions between basis function distributions�

���j
�
 �

ZZ
	���r�
	��r�
	

�
��r�
	��r�


r��
dr�dr�� �����


The relationship between the two is� of course

�ijjkl
 �
X
����

C�iC�jC�kC�l���j
�
� �����


����� Initial Guess

HF Theory assumes that an electron moves in a potential which is the average of the

potentials due to all the other electrons and nuclei� so a trial wavefunction is required for the

potential before the energy can be calculated� The optimal wavefunction is then found by

iteratively solving the Schr�odinger equation� This initial guess must be close enough to the

optimum wavefunction for the equations to converge to the correct electronic state�

There are several ways to obtain a guess for the wavefunction� the simplest of which is to

guess the MO coe�cients by diagonalising the core Hamiltonian matrix ����� In ���� Wolfs


berg and Helmholtz presented a more sophisticated procedure which also uses the overlap

matrix ����

H�� � cxS���H�� � H��
�� �����


where cx is a constant� Obviously� with the guess playing such a crucial role in the e�ciency

of HF theory� it is an area of much research one of the latest �and more successful
 methods

uses a superposition of atomic densities �SAD
 �����

����� Restricted Closed Shell Hartree�Fock

In the restricted formalism each spatial orbital contains two electrons� one spin up� the

other spin down� That is�

��i���x
 � �i�r
��s


��i�x
 � �i�r
��s
�
�����


Using these orbitals the HF energy is� in terms of the spatial components of molecular orbitals

�remembering that the wavefunction is normalized and that the orbitals are orthonormal
�

E �h�j �Hj�i

�

N��X
i

���ij�hj�i
 �

N��X
ij

����i�ij�j�j
� ��i�j j�i�j
�
�����
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where �h represents the one
electron operators and �
P

��i�ij�j�j
 is the Coulombic repulsion

between all electrons� Note that this term includes a spurious self
repulsion� The �nal term of

equation �����
� �P��i�jj�i�j
� has arisen from making the wavefunction antisymmetric�

It is termed the exchange energy and has no classical analogue� Most importantly� the

exchange term contains elements which exactly cancel the spurious self
interaction of the

Coulomb energy� Another important e�ect of the exchange term is that� while an electron

feels only the average �eld of all other electrons� it does feel an instantaneous e�ect of all

electrons of the same spin� That is� the probability of �nding two electrons at the same point

at the same time is non
zero� but the probability of �nding two electrons at the same point

�at the same time
 of the same spin is zero�

To �nd the orbitals which minimize the energy we make the energy stationary with

respect to variations of the MO coe�cients� C�i� If there are m basis functions and n

occupied orbitals� �i� then solving the Schr�odinger equation will produce �m�n
 unoccupied

�or virtual
 orbitals� �a� which obey ��aj�i
 � � �with the standard notation of using i� j to

denote occupied orbitals a� b for virtual and p� q to denote any MOs
�

At the minimum the energy is stationary with respect to the variation

�i � �i � 
�a �i � �� � � � � n a � n� �� � � � �m
� �����


This variation preserves orbital orthonormality through �rst order in 
� Substituting equa


tion �����
 into equation �����
� picking out the coe�cient of 
 and setting it to zero yields

the stationary condition 

��aj�hj�i
 �
X
j

���aijjj
 � �ajjij
� � � �����


It is easier to use these equations when expressed in operator form� We de�ne the Fock

operator such that

Fai ���aj �F j�i


���aj�hj�i
 �
X
j

���aijjj
 � �ajjij
� � �
�����


or� in operator form

�F �r�
 � �h�r�
 � � �J�r�
� �K�r�
� �����


where the Coulomb operator� �J � is

�J�r�
 �
X
j

Z
��
j �r�


r��
dr� �����
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and the exchange operator� �K� is

�K�r�
 �
X
j

Z
�j�r�
�j�r�


r��
�P�� dr�� �����


where �P�� is the permutation operator� that is

�P���p�r�
 � �p�r�
� �����


The Fock operator is therefore an e�ective one
electron Hamiltonian�

Orbitals that satisfy the condition Fai � � are obtained by solving the Roothaan
Hall

equations ���� ���

X
�

�	�j �F � �ij	�
C�i � �� �����


The resulting orbitals will not only satisfy Fai � �� but also

Fij � �i�ij � �����


This� however� does not matter as the SCF energy is invariant to a mixing of the occupied

orbitals� When the Fock matrix is completely diagonal the orbitals are termed canonical�

����� Restricted Open Shell Hartree�Fock

The Roothaan
Hall equations are unsuitable for an open
shell system� and require some

modi�cation� One approach is to allow some orbitals to contain only an electron of � spin

���� ���� Under such a scheme the energy expression becomes

E �
X
i

���ij�hj�i
 �
X
ij

����i�ij�j�j
� ��i�j j�i�j
�

�
X
s

��sj�hj�s
 �
�

�

X
st

���s�sj�t�t
� ��s�tj�s�t
�

�
X
is

����s�sj�i�i
� ��i�sj�i�s
�

�����


where i� j denote doubly occupied orbitals and s� t denote singly occupied orbitals�

Proceeding as before� we consider the variations

�i ��i � 
�a

�s ��s � 
�a

�i ��i � 
�s

�s ��s � 
�i�

�����




Introduction ��

Substituting these into equation �����
 and minimizing the energy gives the self consistent

conditions

Fai � �

Fsa � �

�
KO
sa � �

Fsi �
�

�
KO
si � �

�����


where

F � H� �JC �KC � JO � �

�
KO �����


with the superscripts C and O denoting summation over closed shell and open shell orbitals

respectively� From this we can de�ne Fock matrices for the � and � electrons

F� � F� �

�
KO �����


F� � F�
�

�
KO� �����


Orbitals can then be found that satisfy the conditions �����
 by diagonalisation of the block

matrix �
BBB�

�F�KO
 F� �
��F� � F�


F� F F�

�
��F� � F�
 F� �F�KO


�
CCCA �����


where the three blocks refer to doubly occupied� singly occupied and virtual orbitals� The

diagonal blocks do not a�ect the stationary conditions� so can be de�ned in any desired way�

Roothaan�s original de�nition has been used above�

The ROHF scheme places an unphysical constraint on the wavefunction� � and � elec


trons in an open shell molecule may feel di�erent potentials� yet their spatial orbitals are

constrained to be the same� This has the e�ect of raising the variational energy� The ROHF

wavefunction must also be of high spin�

����� Unrestricted Hartree�Fock

A simpler way to expand RHF to open shell systems is to introduce separate spatial

orbitals for electrons of � and � spin�

��i���x
 � ��i �r
��s


��i�x
 � ��i �r
��s
�
�����
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This allows Hartree
Fock theory to give excess � electron density at points in the molecule�

something which has been seen in experiment and is only possible in RHF if the wavefunction

is expanded beyond a single determinant� By the variational principle the UHF energy will

be lower than �or equal to
 the RHF energy�

These orbitals lead to two density matrices�

P�
�� �

occX
i

C�
�iC

�
�i

P �
�� �

occX
i

C�
�iC

�
�i

�����


and two Fock operators�

�F��r�
 � �h�r�
 � �J��r�
 � �J��r�
� �K��r�


�F ��r�
 � �h�r�
 � �J��r�
 � �J��r�
� �K��r�

�����


which are combined to form the Pople
Nesbet ���� equations�X
�

�	�j �F� � ��i j	�
C�
�i � �

X
�

�	�j �F � � ��i j	�
C�
�i � ��

�����


the solution of which gives the molecular orbitals�

����� Spin Properties of Hartree�Fock Wavefunctions

The spin operators �Sz and �S� both commute with the non
relativistic Hamiltonian� and

therefore eigenfunctions of the Hamiltonian can be found which are also eigenfunctions of

these spin operators� The permutation operator �equation �����

 commutes with �Sz so single

determinants are eigenfunctions of �Sz� Unfortunately this is not the case for the �S� operator�

It can be shown ���� that

h �S�i �

�
N� �N�

�

��
N� �N�

�
� �

�
� N� �

X
ij

jS��ij j�� �����


where N� and N� are the number of � and � electrons �N� � N�
� and

S��ij �

Z
��i �

�
j dr� �����


For RHF �open and closed shell
 the occupied � orbitals lie within the � orbital�s space 

therefore�

N� �
X
ij

jS��ij j�� �����
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Thus the determinants are eigenfunctions of �S�� However� for unrestricted determinants� the

� orbitals are not constrained to lie within the � space therefore�

N� �
X
ij

jS��ij j�� �����


These determinants will not be eigenfunctions of �S� and are termed spin
contaminated !

they contain higher spin multiplicity components� This spin
contamination can allow the

UHF function to give the correct dissociation behaviour� as the � and � electrons are no

longer forced to occupy the same orbital� However� for methods which build on Hartree


Fock� spin
contamination can have a disastrous e�ect ���#����

����� The cost of HF Theory

The bottleneck for HF calculations is the generation of all the two
electron integrals in

the atomic basis� ���j
�
� The number of these grows as O�N�
� where N is the total number

of basis functions in the system� However� this scaling can be drastically reduced by viewing

���j
�
 as the repulsion between two shell
pairs�

���j � 	���r�
	��r�
 �����


and

j
�
 � 	���r�
	��r�
� �����


If either ���j or j
�
 is so small that it is negligible� the integral ���j
�
 will be negligible�

If the two shells of a shell
pair are very far apart �relative to their di�useness
 then their

overlap will produce a negligible shell
pair� The number of non
negligible shell
pairs grows

only linearly with the size of the system� So� forming only the signi�cant shell
pairs will

generate a number of integrals which grows only quadratically with molecular size� Hence

the cost of HF theory is O�N�
�

There is a separate O�N�
 cost involved in diagonalising the Fock matrix� yet this scaling

does not become noticeable until the system is extremely large� and is not expected to be a

problem in the medium term ����� Recent techniques have made HF theory scale only linearly

with molecular size for certain types of systems these are dealt with in later chapters�

��� Multiple Determinant Wavefunctions

The main de�ciency of HF theory is the inadequate treatment of the correlation between

motions of electrons� No account is made for the correlation between electrons of opposite
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spin� Electrons of the same spin are partially� but not completely� correlated� This leads

to a HF energy above the exact non
relativistic value� This di�erence is de�ned to be the

correlation energy �����

Ecorr � Eexact �EHF � �����


Unfortunately� the energy change in a reactive chemical processes is often of the same mag


nitude as the correlation energy� and the correlation energy can change markedly for many

chemical processes� especially those where the number of electron pairs change� Hence� HF

theory performs well for isodesmic reactions and for locating equilibrium structures �bond

lengths usually to within ����%A and angles with ��
 ����� Vibrational frequencies are usually

within ��&� For relative energies� however� more accurate calculations are often required�

The are a number of techniques that seek to improve on the HF wavefunction� The

method of choice depends very much on the characteristics of the problem� Some of the

desirable features of a method involving electron correlation are �����

�� it should be well de�ned� giving a continuous potential surface and a unique energy for

any nuclear con�guration�

�� it should be �size consistent	� the energy of a sum of non
interacting fragments should

be exactly the sum of separate calculations on the fragments�

�� it should be exact when applied to a two
electron system�

�� it should be e�cient� computational cost scaling slowly with system size�

�� it should be accurate enough to be an adequate approximation to the exact result�

�� it should be variational� that is� the energy is an upper bound to the exact result�

Unfortunately� no current method satis�es all of the above criteria$

����� Con	guration Interaction

To correctly describe the instantaneous interaction of electrons� the inter
electron distance

must be introduced� The most conceptually simple way of achieving this is via Con�guration

Interaction �CI
 ���� ���� CI uses a wavefunction which is a linear combination of the HF

determinant and determinants from excitations of electrons�

� � C��� �
X
i

X
a

Ca
i �a

i �
X
i�j

X
a�b

Cab
ij �ab

ij �
X
i�j�k

X
a�b�c

Cabc
ijk�abc

ijk � � � � �����
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where �a
i represents the determinant with an electron excited from the occupied orbital� �i

to the virtual orbital� �a�

The CI expansion is variational and� if the expansion is complete �Full CI
� gives the exact

correlation energy �within the basis set approximation
� The number of determinants in Full

CI grows exponentially with the system size� making the method impractical for all but the

smallest systems� For this reason the CI expansion is usually truncated at some order� for

example CISD� where only singly and doubly excited determinants are considered� Brillouin�s

Theorem states that singly excited determinants do not mix with the HF determinant �����

Therefore CISD is the cheapest worthwhile form of CI� yet this method scales as O�N	


where N is the size of the system�

The other main problem with truncated CI is that it is not size consistent� For CISD� an

approximate way to correct for these e�ects is to introduce the Davidson correction ����

Ecorr � Ecorr�CISD
 � ��� c��
Ecorr�CISD
 �����


where c� is the coe�cient of the Hartree
Fock wavefunction in the normalized CISD wave


function�

����� Quadratic Con	guration Interaction

A more acceptable way to make truncated CI size consistent was introduced by Pople et

al� in ���� ����� Termed Quadratic Con�guration Interaction �QCISD
� it is formed by the

addition of higher excitation terms� quadratic in the expansion coe�cients� which force size


consistency� The addition of extra terms has not destroyed the correctness for two electrons

�property � above
� At the same time a perturbative treatment of the triple excitations was

proposed� giving rise to QCISD�T
 theory� This addition has proven to be worthwhile ����

and QCISD�TQ
 has even been proposed to include quadruple excitations ����� QCISD scales

as O�N	
 while QCISD�T
 requires one iteration of O�N

�

����� Coupled Cluster Theory

The theoretical framework of Coupled Cluster �CC
 theory was developed in the late

����s �������� but it was not until the late ����s that the practical implementation began to

take place and until ���� that the corner stone of modern implementation� CCSD ���� �CC

including all single and double excitations
� was presented�
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CC solves the size consistency problem of CI by forming a wavefunction where the exci


tation operators are exponentiated�

�CC � exp� �T 
�� �����


where

�T � �T� � �T� � �T� � � � � �����


and �Tn is a linear combination of all n
type excitations� for example�

�T��� �
X
i

X
a

Ca
i �a

i

�T��� �
X
i�j

X
a�b

Cab
ij �ab

ij

�����


where Ca
i and Cab

ij are the coe�cients to be determined� Substituting equation �����
 into

equation �����
 yields the CCSD wavefunction

�CCSD � ���
X
a

X
i

Ca
i �a

i �
X
a�b

X
i�j

Cab
ij �ab

ij

�
�

�

X
ab

X
ij

Ca
i C

b
j�

ab
ij �

�

�

X
a�b

X
c�d

X
i�j

X
k�l

Cij
abC

kl
cd�

abcd
ijkl � � � �

�����


This reveals the advantage of CC theory� higher excitations are partially included� but their

coe�cients are determined by the lower order excitations� The coe�cients are determined

by projecting Schr�odinger�s equation on the left with the con�gurations generated by the

�T operator� This replaces the eigenvalue problem by a non
linear simultaneous system�

requiring iterative solution� Luckily� convergence is fast in most cases �����

As mentioned above� the addition of pure triple excitations is required for some chemical

problems� However� CCSDT scales as O�N�
� which is impractical for all but the simplest of

systems� A more practical alternative is CCSD�T
 ���� where the e�ect of triples is estimated

through perturbation theory with a non
iterative O�N

 cost�

With a large enough basis set CCSD typically recovers ��& of the correlation energy for

a molecule at equilibrium geometry� while CCSD�T
 sees a further �ve
 to ten
fold reduction

in error ����� With such accuracy CC has become the method of choice for accurate small


molecule calculations� even though the method is not variational �property �� above
�

A method closely related to CCSD is Brueckner Doubles �BD
 ����� which uses the Brueck


ner orbitals ���� rather than the HF orbitals for a CCSD treatment� The Brueckner orbitals

are de�ned as the set of orbitals for which the single excitation coe�cients are zero� Finding
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these orbitals makes the theory slightly more computationally intensive �BD and BD�T
 still

scale as O�N	
 and O�N

 respectively
� However� BD theory promises a slight increase in

accuracy above CCSD�

����� M
ller�Plesset Perturbation Theory

M�ller
Plesset Perturbation theory ���� ��� treats the exact Hamiltonian� �H� as a small

perturbation from the HF Hamiltonian� �H� ! the sum of the one
electron Fock operators

de�ned by equation �����
� That is�

�H � �H� � 
 �V � �����


If we expand the exact energy and wavefunction in terms of the perturbation

�i � �
���
i � 
�

���
i � 
��

���
i � � � �

Ei � E
���
i � 
E

���
i � 
�E

���
i � � � � �

�����


where �
�n�
i is the n
th state HF wavefunction� Substituting equations �����
 into the

Schr�odinger equation and collating the powers of 
 gives the equations�

�H��
���
i � E

���
i �����


�H��
���
i � �V �

���
i � E

���
i �

���
i � E

���
i �

���
i �����


�H��
���
i � �V �

���
i � E

���
i �

���
i � E

���
i �

���
i � E

���
i �

���
i �����


and so on� Multiplying each of these equations on the left by �� and integrating over all

space yields expressions for E�n� in terms of �V and ��n����

E
���
i � h����

i j �H�j����
i i �����


E
���
i � h����

i j �V j����
i i �����


E
���
i � h����

i j �V j����
i i �����


E
���
i � h����

i j �V j����
i i �����


and so on� From this it can be seen that the HF energy is the sum of E
���
� and E

���
� �

By using the expansion

�
���
i �

X
n

c���n ����
n �����


in equation �����
 and rearranging� an expression for the coe�cients can be found�

c���n � �h�
���
n j �V j����

� i
E
���
n �E

���
�

� �����
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Inserting this expansion into the second
order energy expression gives a readily computable

formula for the second
order M�ller
Plesset �MP�
 energy

E
���
� �

�

�

X
ijab

��iajjb
 � �ibjja

�

�a � �b � �i � �j
� �����


The MPn energies are size consistent� but not variational� Size consistency can be seen by

considering the MP� energy for two widely separated systems A and B� The energy expression

will only be non
zero if the orbitals �i� �j � �a� �b are all on A� or all on B� Thus there are no

cross
correlation terms�

The computational cost scaling of the MPn energy is O�N �n���
� For MP� this arises from

the need to transform the integrals over atomic orbitals into integrals over molecular orbitals�

MP� is a relatively cheap form of correlation� yet the higher orders become comparitively

very expensive� especially considering that a CC or QCI calculation may be more accurate�

Perturbation theory relies on the starting wavefunction being close to the exact wave


function� When this is the case� convergence of the MP series is rapid� However� when bonds

are stretched the MP series becomes oscillatory� Also� if a UHF wavefunction with high spin

is used� convergence can be extremely slow �������� Recent results have suggested that with

large basis sets divergence can occur even for systems where HF is a good starting point �����

For all these reasons it is expected that MP theory will become less popular�

����� Gaussian�� Theory

If the energy of a molecule at its equilibrium geometry is all that is required� then a

semi
empirical method for determining the correlation energy is available� Gaussian
� �G�


theory ���#��� is a composite procedure� using HF� MP�� MP� and QCISD�T
 �therefore

scaling as O�N


� It has been parametrized using ��� experimentally well
characterized

atomization energies� ionization energies� electron a�nities and proton a�nities�

The procedure approximates a large basis QCISD�T
 calculation using a series of additive

approximations� G� theory is usually within �
� kcal'mol of experiment� This combined with

its "black box� nature is making the method very popular ! even for correcting experimental

energies� However� the method has been shown to fail for some quite simple problems �����

��	 Basis Sets

Equation �����
 states that the orbitals are made up of a linear combination of basis

functions� Obviously� we have restricted the orbitals� �exibility unless the basis functions
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form a complete set� Each function added to the basis increases the computational cost� so

it is vital that the number of functions in a basis is kept as small as possible� while at the

same time providing the orbital with as much �exibility as required�

The most convenient way to de�ne a basis set for any nuclear con�guration is to de�ne

a particular set of functions for each nucleus� depending only on the nuclear charge of that

nucleus� There are two main types of basis functions in use today� The �rst� introduced by

Slater in ����� are termed Slater
Type Atomic Orbitals �STOs
 ����� STOs have exponential

radial parts

	a�r
 � �x�Ax
ax�y �Ay
ay�z �Az

aze��jr�Aj �����


with a center A � �Ax� Ay� Az
� angular momentum a � �ax� ay� az
 and nuclei dependent

exponent �� STOs� like exact wavefunctions� have cusps at the nuclei and decay exponentially�

Unfortunately� integrals over STOs are expensive to compute�

In ���� Boys ���� suggested that basis functions constructed of Gaussian
Type Atomic

Orbitals �GTOs
 would overcome the computational di�culties of STOs� A GTO has the

form

	a�r
 � �x�Ax
ax�y �Ay
ay�z �Az

aze��jr�Aj

�

� �����


GTOs decay too fast and have incorrect nuclear cusps� so it is not surprising that many more

GTOs than STOs are required to achieve the same accuracy ����� However� the speed with

which integrals over GTOs can be calculated more than compensates for this�

If STO properties are desired� they can be approximated by a sum of Gaussians� a phi


losophy which led to the introduction of the STO
nG basis sets ����� These are an example

of Contracted GTOs ����

	a�r
 �

KAX
k

Dak�x�Ax
ax�y �Ay

ay �z �Az


aze��kjr�Aj
�

�����


where KA is referred to as the degree of contraction and the Dak are the contraction co


e�cients� The contraction coe�cients are not changed during a calculation� reducing the

computational overhead�

There are several di�erent basis sets in common use� all o�ering di�erent trade
o�s be


tween accuracy and speed� Some of the more popular are those by Dunning ���� and the

"split
valence� sets by Pople and co
workers ���#����
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��
 Molecular Properties

While the energy is undoubtedly the fundamental quantity� chemists usually characterize

molecules by other properties� for example� the dipole moment or the molecular structure�

The ability to accurately calculate these properties is one of the major strengths of modern

electronic structure theory� These calculations are made possible by the fact that the prop


erties are responses of the molecule to external parameters such as the nuclear coordinates�

applied electric and magnetic �elds� etc� These parameters become variables on which a

potential energy surface is mapped out� Therefore analytic derivatives of the energy with

respect to these variables yields the familiar molecular properties�

The derivatives with respect to nuclear positions give the nuclear forces� which allows

rapid minimization of the energy with respect to nuclear coordinates� providing the molecular

structure� Second derivatives with respect to nuclear position reveal the force constants�

allowing harmonic frequencies to be calculated� These derivatives also allow the classi�cation

of stationary points� greatly facilitating the location of transition structures �which will be

�rst order saddle points
�

The various derivatives with respect to electric �eld� magnetic �eld and nuclear spin allow

determination of a range of properties� including� electric polarizability� infrared intensities�

magnetic susceptibility� chemical shielding� spin
spin coupling� Raman intensities and hy


perpolarizabilities� However they are beyond the scope of this thesis� and these properties

will not be discussed here� What is important is that they all result from derivatives of the

energy� and thus fast evaluation of the molecular energy is highly desired�
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Density Functional Theory

��DFT is� As easy as rolling over in bed	 
 H� F� Schaefer III

��� Introduction

In recent years Density Functional Theory �DFT
 has become the most popular method in

quantum chemistry� accounting for approximately ��& of all calculations today� The reason

for this preference is the extreme computational cost required to obtain chemical accuracy

with multiple determinant methods� DFT scales with the same order as HF theory ! O�N
�

This di�erence in speed is heightened by the fact that multiple determinant calculations

require very large basis sets� with high momentum basis functions� whereas DFT can produce

accurate results with relatively small basis sets� This is due to the poor behaviour of the

HF wavefunction when the inter
electronic distance becomes very small� The cusp
condition

���#��� states that the wavefunction should increase linearly when moving away from r�� � ��

The post
HF methods of section ����
 try to account for this by introducing terms of r��� and

higher� Thus� the convergence of the correlation energy with the momentum in the basis set

can be exceedingly slow� of the order of �l � �
� 
�� �����

DFT avoids the expense of the more traditional methods� deriving the energy directly

from the electron probability density� rather than the molecular wavefunction�thus drastically

reducing the dimensionality of the problem�
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��� The Hohenberg�Kohn Theorems

DFT was given a formal footing by the two theorems introduced by Hohenberg and Kohn

in ����� It is said that after the two theorems were introduced� the spectroscopist E� Bright

Wilson ���� stood up and gave a much more conceptual overview of the theory�

If the exact electron density is known� then the cusps in 
�r
 will provide the positions

of the nuclei� The slope of 
�r
 at the nucleus A must obey

�

�rA
�
�rA


����
rA��

� ��ZA�
��
 ����


�where �
 denotes the spherical average of the density
 giving the charge at the nucleus� ZA�

Thus the full Schr�odinger Hamiltonian is known� as it is completely de�ned by the nuclear

charges and position� Therefore the wavefunction and energy can be found� and hence� the

system can be completely described by the electron density�

A Hamiltonian of the form

�H � ��

�

NX
i

r�
i �

NX
i

v�ri
 �

NX
i

NX
j�i

�

jri � rj j ����


is completely determined by the external potential� v�r
� The �rst Hohenberg and Kohn

theorem ���� states that� for non
degenerate ground states� the external potential v�r
 is

determined� to within an additive constant� by the electron density� 
�r
� The theorem has

since been extended to include degenerate ground states �����

The proof is based on the minimum energy principle and begins by considering two exter


nal potentials� v��r
 and v��r
 arising from the same density� There will be two Hamiltonians�

�H� and �H� with the same density� but di�erent wavefunctions� �� and ��� Now� using the

variational principle�

E�
� � h��j �H�j��i � h��j �H�j��i� h��j �H� � �H�j��i ����


� E�
� �

Z

�r
�v��r
� v��r
� dr� ����


Similarly

E�
� � E�

� �
Z

�r
�v��r
� v��r
� dr� ����


which leads to the contradiction

E�
� � E�

� � E�
� � E�

� � ����
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Hence� the external potential is determined by the density and we may thus represent the

energy as a functional of the density

E�
� �

Z

�r
v�r
 dr � T �
� � Vee�
� ����


where T �
� is the kinetic energy and Vee�
� is the electron
electron repulsion� including the

Coulombic interaction� J �
��

J �
� �
�

�

ZZ

�r�

�r�


jr� � r�j dr�dr�� ����


The second Hohenberg
Kohn theorem ���� introduces the variational principle into DFT 

for a trial density (
�r
� such that (
�r
 � � and
R

(
�r
 dr � N �

E� � E�(
� ����


where E�(
� is the energy functional from equation ����
� The proof is as follows� the �rst

Hohenberg
Kohn theorem allows (
 to determine its own potential (v� Hamiltonian �H and

wavefunction (�� which can be used as a trial wavefunction for the problem with external

potential v� Therefore�

h(�j �Hj(�i �

Z
(
�r
v�r
 dr � T �(
� � Vee�(
� � E�(
� � E�
�� �����


Assuming that E�
� is di�erentiable� equation ����
 requires that the ground state density

be stationary� subject to the constraint that the integral of the density gives the number of

electrons�

�E�
� � ��

�Z

�r
 dr�N

	
� � �����


which leads to the Euler
Lagrange equation

� � v�r
 �
�T �
�

�
�r

�
�Vee�
�

�
�r

�����


where a familiar property to chemists� the chemical potential �� has been introduced�

Equation �����
 would be an exact equation for 
�r
 if the exact form of T �
� and Vee�
�

were known� Unfortunately the Hohenberg
Kohn theorems do not provide this� only that

they exist� Also T �
� and Vee�
� are de�ned independently of v�r
� so once we have a form

for these functionals they can be applied to any system�
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��� The Constrained Search Formulation

The second Hohenberg
Kohn theorem has two drawbacks� Firstly� it assumes that there

is no degeneracy in the ground state� and secondly the density must be v
representable� it

must arise from a wavefunction with a Hamiltonian able to be written in the form of equation

����
� The speci�c conditions that make a density v
representable are unknown� but many

"reasonable� densities have been shown to be non
v
representable ���� ����

A weaker constraint� that the density is N 
representable� can be used if the Levy

constrained
search is used ���� ���� A density is N 
representable if it can be obtained from

some antisymmetric wavefunction� The theory begins by showing how to distinguish the

ground state wavefunction �� from a wavefunction ��� that simply integrates to the ground

state density 
��r
� The variational principle gives

h��� j �Hj���i � h��j �Hj��i � E�� �����


Remembering that the potential energy due to the external �eld v�r
 is a function of the

density leads to

h��� j �T � �Veej���i�

Z
v�r

��r
 dr � h��j �T � �Veej��i�

Z
v�r

��r
 dr �����


h��� j �T � �Veej���i � h��j �T � �Veej��i� �����


Thus the �� is the wavefunction that integrates to 
� and minimizes the expectation value

of �T � �Vee� De�ning our universal functional as

F �
� � min

��

h�j �T � �Veej�i� �����


where F �
� searches all � that yield the input density 
� allows the energy to be expressed

as

E� � min
�

�
F �
� �

Z
v�r

�r
 dr

	
�����


� min
�

E�
� �����


where

E�
� � F �
� �

Z
v�r

�r
 dr �����


which is a search over all N 
representable densities� Thus� the v
representable problem has

been removed� The restriction requiring no degeneracy has also been lifted� In degenerate

systems the wavefunction giving 
�r
 will be selected� All that remains is to �nd an accurate

form for the functional E�
��
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��� Density Matrices

Before introducing the various density functionals� it is useful to examine density matrices

and the exchange correlation
hole� The N 
th order density matrix is de�ned as

�N �x��x
�
� � � �x�N �x�x� � � �xN 
 � �N �x��x

�
� � � �x�N 
��

N �x�x� � � � xN 
� �����


From this the �rst
 and second
order reduced density matrices can be de�ned�

���x
�
��x�
 � N

Z
� � �
Z

�N �x��x
�
� � � �x�N 
��

N �x�x� � � �xN 
 dx� � � � dxN �����


���x
�
�x

�
��x�x�
 �

N�N � �


�

Z
� � �
Z

�N �x��x
�
� � � �x�N 
��

N �x�x� � � �xN 
 dx� � � � dxN � �����


Note that the �rst
order density matrix integrates to the number of electrons� and the second


order density matrix integrates to the number of electron pairs� Obviously� �� can be obtained

from �� by integration�

���x
�
��x�
 �

�

N � �

Z
���x

�
�x��x�x�
 dx�� �����


Most operators of interest do not involve the spin coordinates� so it is common to integrate

over spin� forming the spinless density matrices �����


��r
�
�� r�
 �

Z
���r

�
�s�� r�s�
 ds� �����



��r
�
�r
�
�� r�r�
 �

ZZ
���r

�
�s�r

�
�s�� r�s�r�s�
 ds�ds�� �����


The diagonal element of 
�r��� r�
 is simply the electron density� 
�r�
� There is a shorthand

for the diagonal element of 
��


��r�� r�
 � 
��r�r�� r�r�
� �����


Using this new notation the expectation value of the electronic Hamiltonian can be written

as

E �

Z
���

�
r�
r
��r

�� r
�r��r dr�

Z
v�r

�r
 dr �

ZZ
�

r��

��r�� r�
 dr�dr�� �����


For restricted HF the last term simpli�es to

J �
��K�
�� �
�

�

ZZ
�

r��

�r�

�r�
 dr�dr� � �

�

ZZ
�

r��
j
��r�� r�
j� dr�dr� �����


where the �rst
order reduced density matrix� the Fock
Dirac density matrix� is de�ned in

terms of the HF orbitals


��r�� r�
 � �

N��X
i

��r�
���r�
� �����
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��� The Exchange Correlation Hole

The last term of equation �����
 can be separated into the classical� J �
�� and non
classical

parts by de�ning


��r�� r�
 �
�

�

�r�

�r�
�� � h�r�� r�
� �����


where h�r�r�
 is the pair correlation function� Slater ���� looked at this in a slightly di�erent

way� de�ning the exchange
correlation hole by


xc�r�� r�
 � 
�r�
h�r�� r�
� �����


Using the spinless equivalent of equation �����
 we �nd the conditionZ

xc�r�� r�
 dr� � �� �����


which must hold for all values of r�� The electron repulsion term can then be written

Vee � J �
� �
�

�

ZZ
�

r��

�r�

xc�r�� r�
 dr�dr�� �����


where the non
classical part has been expressed as a repulsion between the density and the

exchange correlation hole� a distribution of unit positive charge centered around r�� The

coulomb potential due to the non
classical part has been shown to have the asymptotic

behaviour ����

lim
r���

vxc�r�
 � lim
r���

Z
�

r��

xc�r�� r�
 dr� � � �

r�
�����


��� The Uniform Electron Gas

There is no systematic way to �nd or improve a density functional� The most appealing

way forward is to �nd the exact solution for a model system� and then assume that the

system of interest behaves similarly to the model� The �rst density functionals were due to

Thomas ����� Fermi ���#��� and Dirac ����� all of which used the uniform electron gas as their

model�

The uniform electron gas is de�ned as a large number of electrons N in a cube of volume

V � throughout which there is a uniform spread of positive charge su�cient to make the

system neutral� The uniform gas is then de�ned as the limit N � �� V � �� with the

density 
 � N�V remaining �nite� Although it does bear some resemblance to electrons in
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metals� its widespread use is due to its simplicity ! it is completely de�ned by one variable�

the electron density 
�

Using the uniform electron gas� an expression for the kinetic energy �the Thomas
Fermi

kinetic functional
 can be derived ����

T TF�
�
� � �
�

��
����
���

Z

���� �r
 dr� �����


where � can take the values of � or �� When applied to atoms and molecules the Thomas


Fermi functional yields kinetic energies that are about ��& too small�

Similarly� an expression for the exchange energy of the uniform electron gas can be cal


culated �the Dirac exchange functional
 ����

ED��
x �
�� � ��

�

�
�

��

���� Z

���� �r
 dr� �����


The Dirac functional also gives exchange energies that are roughly ��& smaller than those

from HF theory ����� More worrying is that the spurious self
interaction of electrons is not

exactly canceled�

A closed shell functional for the correlation energy of the uniform electron was determined

by Vosko� Wilk and Nusair ����� who combined analytic information about the high and low

density limits with the quantum Monte
Carlo simulation results of Ceperly and Alder �����

The VWN functional usually overestimates the correlation energy of atoms and molecules by

approximately a factor of two ����� The uniform electron gas is obviously a better reference

system for exchange energies than it is for correlation energies�

��	 The Almost Uniform Electron Gas

The electron densities of atoms and molecules are often far from uniform� so functionals

based on systems which include an inhomogeneous density should perform better� In ����

von Weizsacker ���� placed in�nitesimally small ripples on the uniform electron gas and

calculated the second order correction to the kinetic energy

TW���
�� � T TF�
�
� � �
�

�

Z

���� x�� dr �����


where x�r
 is a dimensionless quantity� the reduced density gradient

x�r
 �
jr
�r
j

����r


� �����
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Unfortunately the original derivation was �awed and the above functional is too large by a

factor of nine ����� The corrected functional is a large improvement on T TF�
�
�� yielding

kinetic energies typically within �& of HF theory� The fourth order ���� and sixth order ����

corrections have subsequently been computed however� the series is divergent due to the

extremely large values of x�r
 in the Rydberg regions� and it is advantageous to stop after

second order�

A similar correction was made to the Dirac exchange functional by Sham ����� Kleinman

���� later showed that the Sham derivation was too small by ��'�� The second order correction

to the exchange energy is

ESK
�
x �
�� � ED��

x �
��� �

����
���

Z

���� x�� dr� �����


The corrected functional gives exchange energies that are typically within �& of HF however�

it is not seen as an improvement over the Dirac functional� as the potential is unbounded in

the Rydberg regions of atoms and molecules�

��
 Kohn�Sham Theory

The kinetic energy has a large contribution to the total energy� Therefore even the �&

error in the kinetic energy of the Thomas
Fermi
Weizsacker model prevented DFT from being

used as a quantitative predictive tool� Thus DFT was largely ignored until ���� when Kohn

and Sham ���� introduced a method which treated the majority of the kinetic energy exactly�

The theory begins by considering the noninteracting reference system� N noninteracting

electrons� each in one of N orbitals� �i� Such a system will be de�ned by the Hamiltonian

�Hs �
NX
i

���

�
r�
i 
 �

NX
i

vs�ri
 �����


which has an exact eigenfunction that is the single determinant constructed from the N

lowest eigenstates of the one
electron equations�
��

�
r� � vs�r


	
�i � �i�i� �����


The corresponding Euler
Lagrange equation is

� � vs�r
 �
�Ts�
�

�
�r

� �����
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For this system the kinetic energy and electron density are given exactly by

Ts�
� �

NX
i

h�ij � �

�
r�
i j�ii �����



�r
 �
NX
i

j�i�r
j� �����


and the total energy is given by

E�
� � Ts�
� �

Z
vs�r

�r
 dr �����


The quantity Ts�
� is well
de�ned� but not the exact kinetic energy� T �
�� de�ned in equation

����
� Kohn and Sham reformulated the interacting problem so that its kinetic component

is de�ned to be Ts�
� and rearranging equation ����
 to give

E�
� � Ts�
� � J �
� �

Z
v�r

�r
 � Exc�
�� �����


where Exc�
� is the exchange
correlation energy� made up of the non
classical electron
electron

repulsion and also the di�erence between the exact and noninteracting kinetic energy

Exc�
� � T �
�� Ts�
� � Vee�
�� J �
�� �����


The Euler
Lagrange equation �����
 now becomes

� � ve��r
 �
�Ts�
�

�
�r

�����


where the Kohn
Sham �KS
 e�ective potential� ve� is de�ned as

ve��r
 � v�r
 �

Z

�r�


jr� r�j dr
� � vxc�r
 �����


and the exchange
correlation potential� vxc is

vxc�r
 �
�Exc�
�

�
�r

� �����


Kohn and Sham noticed that equation �����
 is the same as that for a non
interacting

system moving in the potential ve��r
� Thus� the exact density can be obtained by solving

the N one
electron equations �the restricted KS equations
�
��

�
r� � ve��r


	
�i � �i�i� �����


Notice that ve� depends on 
�r
� via equation �����
� hence the KS equations must be solved

iteratively�
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The KS equations are very similar to the Hartree
Fock equations� In fact� setting the

exchange
correlation potential to the HF exchange potential�

vxc�r
 � �
Z X

j

�j�r
�
�j�r


jr� r�j
�Prr� dr

�� �����


yields the HF equations� Drawing too many similarities to HF is dangerous� however� Firstly�

the KS orbitals are simply a way of representing the density they are not �as in HF
 an

approximation of the wavefunction� In particular� Koopmans� theorem ���� ! that the

ionization potentials and electron a�nities are approximated by the negative of the HF

occupied and virtual orbital eigenvalues respectively ! is invalid for KS orbitals� The highest

occupied KS eigenvalue has been shown to be the negative of the �rst ionization potential�

though ����� Also� HF theory is variational� providing an upper bound to the exact energy�

yet DFT is only variational if the exact energy functional is used�

The above analysis is only appropriate for closed shell molecules� Because the KS equa


tions so closely follow the restricted HF equations� both the restricted open shell and unre


stricted methodologies are readily available� However� the KS equations are formally exact

�given the exact Exc�
�
� so it must be able to produce an excess of � electron density at

points in the molecule ����� and therefore only the unrestricted formalism is appropriate� The

unrestricted KS equations are �
��

�
r� � v�e��r


	
��i � ��i �

�
i �����
�

��

�
r� � v�e��r


	
��i � ��i �

�
i �����


where

v�e��r
 � v�r
 �
�J �
�

�
�r

�
�Exc�
�� 
��

�
��r

�����


v�e��r
 � v�r
 �
�J �
�

�
�r

�
�Exc�
�� 
��

�
��r

� �����


One problem with the above derivation of the KS equations is that the density must be

non
interacting v
representable� That is� there must exist a potential vs that will produce the

same density as the exact wavefunction� If the density is not non
interacting v
representable�

the determinant formed from the KS orbitals will be an excited state ����� The criteria that

make a density non
interacting v
representable are unknown�

Just as in HF theory� the KS equations are solved by expanding the orbitals over a basis

set� The major advantage of DFT is that the basis set requirements are far more modest
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than the more conventional correlated methods ���� ���� In DFT the basis set only needs to

represent the one electron density ! the inter
electron cusp is accounted for by the e�ective

potential� ve� � In the more traditional methods the basis set describes the entire N 
electron

wavefunction� requiring an accurate description of the cusp which is sensitive to the basis

set�

��� Exchange�Correlation Functionals

KS Theory allows the kinetic energy to be computed to a chemical accuracy� so "all�

that remains is an accurate form for the exchange
correlation energy functional� Exc�
�� The

exact form is obviously unknown� and with the accuracy of DFT determined mainly by the

functional used� it is no surprise that �nding new functionals is the focus of much modern

research�

The simplest form for Exc�
� is the Dirac exchange term� forming Hartree
Fock
Slater

�HFS
 theory ����� Slater also pointed out that ED��
x systematically underestimated the ex


change energy by about ��& and proposed multiplying the Dirac coe�cient by ���� resulting

in the semi
empirical X� theory� While the HFS total energies are not as accurate as HF

theory� for thermochemistry� HFS theory is a big improvement over HF theory ������ This is

due to a convenient cancellation of errors arising from HFS systematically underestimating

the total energy�

The natural extension of HFS theory is to add the VWN functional for the correlation

energy� thus using the uniform electron gas to model exchange and correlation e�ects� The

resulting theory is termed the Local Spin Density approximation �LSDA
� The LSDA is an

improvement over HFS theory� yet VWN makes no account for the correction of the kinetic

energy� Tc�
�� where

Tc�
� � T �
�� Ts�
� �����


which can reach the magnitude of the correlation energy itself ����� As VWN usually over


estimates Ec by a factor of two� inclusion of Tc could have a dramatic e�ect on the accuracy

of the VWN functional�

����� The Becke Exchange Functional

The exchange energy is an order of magnitude larger than correlation energy� therefore�

the ��& error of ED��
x is the major problem of the LSDA� One reason for this could be the
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incorrect asymptotic behaviour of ED��
x �

The exchange energy density �x�r�
 may be de�ned as

Ex�
� �

Z

�r�
�x�r�
 dr� �����


�x�r�
 �
�

�

Z

x�r�� r�


r��
dr�� �����


Using equation �����
 the following constraint for Ex�
� is obtained�

lim
r���

�x�r�
 � � �

�r�
� �����


The long range behaviour of the electron density is

lim
r��


�r
 � exp
h
��
p

�Iminr
i
� �����


where Imin is the exact �rst ionization potential ������ Therefore the LSDA �x will have the

asymptotic form

lim
r��

�LSDAx �r�
 � exp

�
��

�

p
�Iminr

	
�����


In ���� Becke ����� introduced a correction to the Dirac exchange functional which gives

the exchange energy density the correct asymptotic behaviour� The functional form is

EB��
x �
�� � ED��

x �
��� b

Z

����

x��
� � �bx� sinh�� x�

dr� �����


with the parameter b � ������ determined by �tting the exchange energies of the �rst six

noble gas atoms� One de�ciency of Becke�s functional is that the potential decays asymptot


ically as ����� ����

lim
r��

vB��x �r
 �
�

r�
� �����


instead of the correct ����� ����

lim
r��

vx�r
 �
�

r
�����


Despite this drawback� EB��
x is an extremely accurate density functional� For predict


ing atomic exchange energies it is �
� orders of magnitude better than the Sham
Kleinman

functional ������
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����� The Perdew�Wang �� Functional

In ���� Perdew ��������� modi�ed Becke�s functional� constraining it to become like the

Sham
Kleinman functional as x� �� and tend towards zero as x��� while trying to retain

the EB��
x behaviour for medium range x� The functional form is

EPW��
x �
�� � ED��

x �
���
Z

bx�� � �b� �����
����
x�� exp��������x��
� ���	x��
� � �bx� sinh�� x� � ���	x����

dr �����


where � is the Dirac coe�cient of �
�



�
�	

����
� However� despite the added complexity� energies

obtained from EPW��
x are seldom an improvement over EB��

x ������ The functional has also

been shown to violate the original condition upon which EB��
x was developed ������

����� The Gill Functional

With the knowledge that satisfying limiting constraints had not helped in the EPW��
x

functional and that the EB��
x functional was a �successful
 attempt to reduce the x� behaviour

of the Sham
Kleinman functional� Gill ����� introduced a simple exchange functional

EG�	
x �
�� � ED��

x �
��� b

Z

���� x���� dr �����


where the parameter b � ����� was chosen by �tting the exchange energy of the Argon atom�

The EG�	
x functional has incorrect behaviour for both high and low x� yet it is similar to

EB��
x for mid
range x values� The fact that this far simpler functional performs comparably

to EB��
x ����� shows again that the limiting behaviour of functionals is of less importance

than the behaviour for mid
range values of x�

����� The Lee�Yang�Parr Functional

All of the above functionals use� in some way� the uniform electron gas� This approach

was abandoned by Lee� Yang and Parr in ����� who turned to the Helium atom instead�

Colle and Salvetti ����� had already presented an approximate correlation energy formula for

the Helium atom in terms of the second order HF density matrix� Lee� Yang and Parr �����

turned this into a functional of the density� gradient and Laplacian� Miehlich� Savin� Stoll

and Press ����� later eliminated the Laplacian terms using integration by parts� For closed

shell systems the functional is

ELY P
c �
� � �a

Z



� � d
����
� ��b

��

�jr
j� � b

�
�

��
����
���
��� � jr
j�

�
�

��
� ��

��

�	
�
� dr

�����
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where

� �
exp��c
����


� � d
����

����� �����


� � c
���� �
d
����

� � d
����
�����


with the parameters a � �������� b � ������ c � ������ and d � ����� derived from the

Colle
Salvetti �t to the Helium atom�

ELY P
c is one of the most accurate correlation functionals at the moment� especially when

combined with EB��
x � forming BLYP theory� BLYP geometries are of a standard comparable

to HF theory �however� BLYP tends to overestimate bond lengths� whereas HF underesti


mates
� and atomization energies� ionization energies� electron a�nities and proton a�nities

are usually accurate to within �� kJ mol�� of experiment ������ BLYP predicts harmonic fre


quencies that are of an accuracy similar to that of MP� theory ! a noticeable improvement

over HF�

BLYP can fail quite spectacularly though� especially in systems with stretched bonds�

An example is the barrier height calculation for the reaction �����

H � H� � H� � H �����


While HF� MP� and CCSD�T
 all do quite well in predicting the barrier height� BLYP

predicts a height only one quarter of that measured experimentally �however� LSDA predicts

H� to be more stable than H � H�$
� The lack of an exact self
interaction correction was

shown to be important�

����� The Wigner Functional

An extremely simple form for the correlation energy was suggested by Wigner in ����

������ which has subsequently been shown to perform better than EV WN
c ������ The functional

form contains two parameters� and there have been a number of reparametrizations ����#�����

each with its own strengths� The functional occurs as a term in ELY P
c � and simply sticking

with these parametisations �and pairing with EB��
x 
 yields an accuracy surprisingly close to

BLYP ������ The spin
polarized functional form is

EW��
c �
�� 
� � � ��a

Z
�

� � d�
� � 
�
����

�
�


� � 
�
dr �����


with the parameters a � ������� and d � ������ The Wigner form does satisfy limiting

conditions ������ but it is perhaps of most importance due to its simplicity� showing that

current correlation functionals �such as ELY P
c 
 may be unnecessarily complicated�
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����� Hybrid Density Functionals

A familiar theme when accessing the accuracy of exchange
correlation functionals is that

density based functionals will overestimate a quantity which HF theory will underestimate

�for example� bond lengths �����
� With this in mind� Becke ����� has argued that the exact

exchange
correlation functional must include a fraction of HF exchange� Initially Becke �����

proposed a functional that consisted of ��& HF exchange and ��& density
based exchange


correlation� This functional was quickly replaced by the three parameter mix denoted B�P

EB�P
xc � ELSDA

xc � a��E
HF
x �ED��

x 
 � ax�EB��
x �ED��

x 
 � acE
PW��
c �����


where EPW��
c is the gradient correction of the Perdew
Wang correlation functional ���������

�often used in conjunction with EPW��
x 
� The three parameters a� � ����� ax � ���� and

ac � ���� were determined by minimizing the atomization energies� ionization energies�

electron a�nities and proton a�nities of the G� dataset�

An alternative functional has been proposed� using ELY P
c instead of EPW��

c ������ B�LYP

has the form

EB�LY P
xc � ELSDA

xc � a��E
HF
x �ED��

x 
 � ax�EB��
x �ED��

x 
 � ac�E
LY P
c �EV WN

c 
 �����


with the same parameters as in B�P� B�LYP shows surprising accuracy for thermochemistry�

structures and spectroscopic properties of �rst row molecules ������ The high accuracy of

B�LYP has made it perhaps the most popular functional of modern density functional theory�

���� Numerical Evaluation of Exchange�Correlation Integrals

The exchange
correlation functions are su�ciently complicated that the integrals required

cannot be carried out analytically� Even the simplest of the family �ED��
x 
 is too complex if

Gaussian basis functions are used to represent the density� One way forward is to expand

the exchange
correlation potential in terms of auxiliary Gaussian functions ������ The disad


vantage of this scheme is that it is hard to reduce the extent of approximation towards zero�

A more popular way is to calculate the integrals numerically using quadrature schemes�

������ Voronoi Polyhedra

The electron density contains cusps at the nuclei and decays exponentially away from

the nuclei� This suggests that the placement of quadrature points should be dependent
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on the nuclear positions� This can be achieved by partitioning space into regions �Voronoi

Polyhedra
� each containing only one atom� The total integral is the sum of single atom

integrals� There are a number of such partitioning schemes ����� ���� however� the scheme

used by the package produced in our research group� Q�Chem ������ is that developed by

Becke ������

The integral

Exc�
� �

Z
F �r
 dr �����


is split up via weight functions wA�r


Exc�
� �
X
A

Z
wA�r
F �r
 dr �����


where the weight functions obey

wA�r
 � � and
X
A

wA�r
 � �� �����


These weights are constructed to be almost unity if A is the closest atom� and almost zero

in the vicinity of other atoms� This is achieved through the variable �� de�ned by

�AB �
rA � rB
RAB

�����


where rA and rB are the distance from atoms A and B� while RAB is the interatomic distance

between atoms A and B� The weight function is then described by

wA�r
 �
PA�r
P

A��B

PB�r

�����


PA�r
 �
Y
A��B

s��AB
 �����


where the function s��AB
 is de�ned as

s��AB
 �

�
�

�

� if � � �AB � �

� if �� � �AB � ��

�����


Becke then removed the discontinuity at �AB � � by rede�ning s��
 as a function with

s���
 � �� s���
 � �� and
ds

d�

����
��

� �� �����


Above is the implementation in Q�Chem� Becke�s original implementation also includes

a correction for atomic size� This is accomplished by a change in variable� working with s��


instead of s��
� where

�AB � �AB � aAB��� ��AB
 �����
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with aAB de�ned by

aAB �
uAB

u�AB � �
�����


uAB �
�� �

� � �
�����


� �
RA

RB
�����


where RA and RB are the Bragg
Slater radii ����� �����

Each of these single
center integrals is then calculated with a spherical polar quadrature

grid �requiring the insertion of more weights� wi
� making the �nal expression for Exc�

Exc �

ZZ
F �r� �� 	
r� sin � drd�d	 �

X
i

X
A

wA�ri
wiF �ri
� �����


������ Radial Integration

Q�Chem� like most modern DFT packages� supports more than one radial quadrature

scheme� With the time and accuracy of a calculation directly linked to the type of grid

used it is not surprising that this is an area of much research� and new� improved grids are

constantly being published ����� ���#����� The work in this thesis� however� uses only the

Euler
Maclaurin quadrature scheme�

The implementation follows that developed by Murray et al� ������ The Euler
Maclaurin

scheme integrates a function over the interval ��� ��� using equally spaced points with equal

weights� Thus a transformation from the interval ����
 is required� The convergence over

the sum of quadrature points is more rapid if the integrand and its low derivatives are small

at the end points� The nature of exchange
correlation functionals ensures that all derivatives

vanish at r � � and the Jacobian factor forces the integrand and its �rst derivative to vanish

at r � �� Handy and Boys ����� ���� thus introduced the transformation to the variable q�

r � �

�
q

�� q

��

�����


dr

dq
� ��

q

�� � q
�
�����


where � is taken as the Bragg
Slater radius� This transformation also has the bene�t of

forcing the integrand and all derivatives up to �fth order to vanish at q � �� and all derivatives

at q � ��
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������ Angular Integration

There are two common types of angular quadrature schemes� di�ering in whether or not

the � and 	 integrations are treated together �Lebedev
 or separately �Gauss
Legendre
�

Lebedev Quadrature

A large amount of work has been done on quadrature schemes to exactly integrate spher


ical harmonics over a sphere ����#����� The most popular are those by Lebedev ����#����

which use quadratures based on the octahedral group� A Lebedev grid of degree L exactly

integrates all spherical harmonics of degree L or less� The number of grid points� NP�L


required is approximately

NP�L
 � �L � �
�

�
� �����


Lebedev grids are currently available up to degree L � �� ���� grid points
� although Q�

Chem has only up to degree L � �� ���� grid points
�

Gauss�Legendre Quadrature

While the Lebedev grids are very e�cient they cannot be used for arbitrary precision�

For this reason it is sometimes desirable to perform the � and 	 integration separately� even

though it is likely to be less e�cient�

The 	 integration is performed with equally spaced points� while the � integration uses

Gauss
Legendre quadrature� which is designed to exactly integrate all polynomials up to de


gree �NP��� where NP is the number of points� To exactly integrate all spherical harmonics

up to degree L� the � quadrature requires �L��
�� points and the 	 quadrature L�� points�

thus

NP�L
 �
�L � �
�

�
�����


which is ��� the e�ciency of the Lebedev scheme�

������ Translational and Rotational Invariance

One of the problems that arises when integration is performed numerically with a �nite

grid is that translational and rotational invariance can be lost� Luckily� using the grid points

as de�ned above ensures translational invariance� The grid points are linked to atomic

centers and therefore translate with nuclear movement� However a rotation of the molecule
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leaving the grid axes unrotated will cause a slight change in energy� This e�ect is even more

pronounced with derivative calculations� in particular the calculation of harmonic frequencies

������

An early attempt to solve rotational invariance was the use of randomly rotated angular

grids� with the hope of averaging out any error ������ A more rigorous solution was given by

Johnson et al� ����� where the grid points are de�ned by

ri � RA �Osi� �����


with RA the atomic position� si the quadrature grid points� and O is the matrix formed from

the eigenvectors� M� of the charge moment tensor

M �
X
A

ZA�jRA �Tj�I� �RA �T
�RA �T
T � �����


with ZA the charge at nucleus A and

T �

P
A ZARAP
A ZA

� �����


With this new de�nition the grid points are de�ned in terms of the molecule� thus re


moving the problem of rotational invariance� This is only a problem when �nite grids are

used� If the grid is made exhaustively large the problem begins to disappear� though this

will usually be computationally infeasible�

������ Standard Quadrature Grid

Following the idea of standard basis sets� Gill et al� ����� have introduced the idea of

a standard grid� The SG
� grid was designed to give numerical integration errors of about

��� kcal mol�� for medium sized molecules� while using as few grid points as possible� The

grid is derived from the EML
�������
 grid� which has �� radial points� given by the Euler


Maclaurin rules� and ��� angular points positioned by the Lebedev rules �a Lebedev grid of

degree ��
�

As the nucleus is approached from the the valence region in a molecule the electron density

becomes spherically symmetrical� and therefore less sophisticated angular grids should be

required� The SG
� grid partitions space into �ve spherical regions around the atom and

then uses Lebedev grids with �� ��� ��� ��� and �� points respectively� The size of each

region depends on the central atom� This produces about ���� points per atom� roughly

a quarter the size of the EML
�������
 grid� yet yielding similar �within a few �
Hartree


accuracy�
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������ Standard Electronic Orientation

The previous two sections show how to "standardize� the DFT energy of a molecule�

However� it ignores the e�ect of a rotation of a degenerate orbital� For example� the occupied

p
orbital of the Boron atom� In HF theory rotation of this orbital does not e�ect the energy�

In DFT rotation will introduce grid e�ects� introducing an error dependent on the size of the

grid� Obviously� with an in�nite grid this problem does not exist�

This can be overcome by removal of degeneracy� forcing the orbital into a particular

orientation� In Q�Chem this is achieved by introducing a small quadrupole �eld ������ with

the components

x� � ��x����� �����


y� � ��x����� �����


z� � ��x����� �����


The e�ect of the �eld on the total energy is negligible� but "standardizes� the DFT energy

for degenerate molecules�

������ XC Linear Scaling

A simple implementation of the above procedure will produce an algorithm which scales

as O�N�
� In ���� Johnson ����� showed that the integration could be performed in only

linear work� with a few modi�cations to the above procedure taking advantage of the fast

decay of the basis functions�

For each basis function 	�� centered at R�� a sphere is de�ned beyond which its in�uence

is deemed negligible� The radius of the sphere� 
�� is found from choosing a threshold �

and requiring that j	��r
j � � for every point outside the sphere� For any grid point rg all

signi�cant basis functions can be found by selecting those that ful�ll

jrg �R�j � 
�� �����


Therefore a list of all signi�cant basis functions is created for every grid point� The impor


tant property of the list is that the number of signi�cant basis functions at each grid point

becomes independent of size for su�ciently large molecules� The construction of this list

is an O�N�
 process ! �number of grid points
 x �number of basis functions
� but Strat


man et al� ����� have noticed that the computational time involved is insigni�cant for even
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very large molecules �C���H��
� If the formation of this list becomes a problem in the fu


ture� P)erez
Jord)a and Yang ����� have reformulated the algorithm into one which scales as

O�N logN
�

The density at any grid point is given by


�rg
 �
X
�
�

P��	��rg
	��rg
 �����


which forces the evaluation of the density to scale as O�N�
� However� if the summation is

restricted to only those basis functions which are signi�cant at the grid point� the compu


tational e�ort per grid point becomes independent of size �for a su�ciently large molecule


and the density evaluation should scale linearly with the molecular size�

���� The Kohn�Sham matrix

To minimize the energy within a basis set requires construction of the Kohn
Sham matrix�

the matrix representation of the operator in equation �����
� Writing the exchange
correlation

energy as

Exc �

Z
fxc�
�r

 dr� ������


the exchange
correlation elements of the Kohn
Sham matrix are given by

F xc
�� �

Z
	�vxc	� dr ������


with the potential de�ned by equation �����
� By using calculus of variations ���� the potential

can be expressed as

vxc �
�fxc
�


�r�
�
�fxc
�r


�
� ������


However� Pople et al� ����� pointed out that the calculus of variations procedure involves

integration by parts in the r
 contribution� Thus the numerical integration of equation

������
 will have an increased error� A more consistent approach is to obtain the exchange


correlation part of the Kohn
Sham matrix from the direct minimization of the energy with

respect to orbital variations� that is

F xc
�� �

�Exc

�P��
�

Z
	�

�fxc
�


	� dr�

Z
�fxc
�r
�r�	�	�
 dr� ������


Another advantage of this formulation is that the second
derivative of the density is no longer

required� a major computational saving�



Chapter �

Density Functional Partitions�

��� Introduction

The major disadvantage of DFT is that there is no systematic way to improve a density

functional� Thus� quality information on the performance of a density functional is essential in

determining how to improve functionals� It is common to compare the exchange
correlation

energies from a density functional with those determined by con�guration interaction �or

the related perturbation or coupled
cluster theories
 on a single determinant reference wave


function� Of greater use in the design of new functionals would be the ability to examine

a functional�s performance for various subsets of electrons in a molecule� These partitions

are common in conventional theory� For example� the correlation energy associated with

inner
shell electrons is often separated and ignored �the frozen
core approximation
� Also�

it is often possible �particularly at the simplest MP� level
 to separate correlation between

electrons of parallel ��� or ��
 and antiparallel ���
 spin� With MP� theory the total corre


lation energy can be expressed as a sum of electron
pair components� making such partitions

straightforward� Another useful partition is the splitting of density into core and valence den


sities� allowing the examination of core
electron'core
electron� core
electron'valence
electron

and valence
electron'valence
electron contributions to the correlation energy�

This chapter� following earlier work of Stoll et al� ����� ���� and Perdew et al� ������

presents similar partitions of DFT exchange
correlation energies to their conventional coun


terparts� This is carried out by examining electron correlation relative to the Kohn
Sham

single determinant reference wavefunction� Correlation energies are obtained from conven


tional theory and DFT� Each may be partitioned by dividing the occupied spin orbitals into

�The work described in this chapter has been carried out in collaboration with Prof� John Pople
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non
overlapping sets� corresponding to a division of the density into two parts� allowing the

resulting energy components to be compared�

��� General Theory

Writing the full spin
dependent density as

��x
 � 
��r
j��s
j� � 
��r
j��s
j� ����


shows that electron density is readily separable into two parts� Integration over the spin

coordinate s gives the regular density


�r
 �

Z
��x
 ds � 
��r
 � 
��r
� ����


Remembering from Chapter � that the KS energy can be written as

E��� � Ts��� � V ��� � J ��� � Exc���� ����


where an approximate functional is used for the exchange
correlation functional Exc����

The KS treatment begins by writing � in terms of a set of orthonormal spin orbitals� �i�

��x
 �

occX
i��

j�ij� ����


leading to the KS equations� The great advantage of this is that it allows the Hartree
Fock

procedure to be written as a special case of KS density functional theory� simply by de�ning

the Fock exchange
only functional for Exc��� as

Ex��� � ��

�

occX
i
j

ZZ
��i �x�
�j�x�
�

�
j �x�
�i�x�


r��
dx�dx�� ����


Note that this exchange energy is de�ned for any appropriately normalized spin orbitals �i�

and hence for any appropriate density ��x
� Thus� the accuracy of a density produced by an

exchange
correlation functional under the KS formalism can be examined by comparing its

value for Ex above with the true Hartree
Fock energy� Thus� we de�ne

EKS��KS � � Ts��KS� � V ��KS� � J ��KS � � Ex��KS �� ����


Also� it should be apparent that

EKS � EHF ����
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as the HF energy is the lowest expectation energy that can be obtained from a single


determinant wavefunction� This also allows the correlation energy to be de�ned as the

di�erence

Ec��KS� � Exc��KS ��Ex��KS�� ����


For the conventional treatment of electron correlation a set of orthonormal virtual spin

orbitals� �KS
a needs to be introduced� A Fock matrix for the KS determinant can then be

constructed

FKS
pq � Tpq � Vpq �

occX
i��

�pijjqi
 ����


where �pijjqi
 is an antisymmetrized two
electron integral

�pqjjrs
 �

ZZ
�p�x�
�r�x�


�

r��
��q�x�
�s�x�
� �s�x�
�q�x�
� dx�dx�� �����


Unless the Fock functional is used� the Fock matrix will not be diagonal� In particular� there

will be nonzero elements Fia connecting the occupied and virtual spin orbitals� To simply

diagonalise this matrix would allow the occupied and virtual orbitals to mix� altering the

density� This can be avoided by separating the matrix into two parts�

FKS � FKS�OO � VV
 � FKS�OV
 �����


corresponding to nonzero occupied
occupied� virtual
virtual blocks in the �rst part and

nonzero occupied
virtual blocks in the second� The matrix FKS�OO � VV
 can then be

diagonalised� providing a new set of spin orbitals that could be described as the canonical

Fock orbitals for the constrained KS determinant� These new occupied orbitals will be an

orthogonal transformation of the KS occupied spin orbitals and will yield the same density�

that is

� �
occX
i��

j�ij� �
occX
i��

j�KS
i j� � �KS� �����


The single determinant wavefunction formed from the occupied �i� written here as ��� will

be equal to �KS�

Second
order M�ller
Plesset theory has been used to determine the conventional correla


tion energy� starting from the �� wavefunction� At �rst order� the MP energy is simply EKS

and the second
order correction is

E��� � �
X
ia

F �
ia

�a � �i
� �

�

X
ijab

�ijjjab
�
�a � �b � �i � �j

� �����
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Note that Fia appears in equation �����
 as the o�
diagonal elements are part of the per


turbation Hamiltonian� If the Fock functional is used to form the KS density all Fia will

vanish and equation �����
 will reduce to the more familiar form of equation �����
� This

new term again essentially allows for a mixing of the occupied and virtual orbitals leading

to a tendency for the KS orbitals to move toward HF� therefore modifying the density� Also�

the Fia contribution to E��� is much smaller than the second part of equation �����
� and

have therefore been omitted here�

��� Energy Partitions

Suppose that the set of occupied spin orbitals �i are split into two non
overlapping

subsets �Ai and �Bi � Since the density � is the sum of the squares of the spin orbitals� it will

consequently be partitioned into two parts �A and �B with

��x
 � �A�x
 � �B�x
� �����


Any energy functional E��A� �B � can then be split into "pure A�� "pure B� and "interacting

AB� parts by the partition

EA � E��A� �� �����


EB � E��� �B � �����


EAB � E��A� �B ��EA �EB � �����


Such a partition has been proposed by Stoll et al� ����� ���� for the spin components� but it

can be applied elsewhere� A similar partition for the conventional energies can be achieved

by treating the energies as functionals of the sets �Ai and �Bi

EA � E��Ai � �� �����


EB � E��� �Bi � �����


EAB � E��Ai � �
B
i ��EA �EB �����


where E��Ai � �� denotes that all integrals involving B spin orbitals are zeroed�

The above partition will cleanly split the MP� correlation energy and also the exchange

energy of the Fock functional� At higher levels of correlation treatment the partitions via

equation �����
 become questionable� There are numerous complicated many
body interac


tions involved which would be somewhat arbitrarily assigned� However� this is not addressed
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here� as only MP� computations are performed� It seems reasonable that the DFT and con


ventional partitions should be comparable at a coarse level� since MP� usually accounts for

the majority of correlation in simple pair terms�

��� Application

The partition schemes described above have been implemented within the Q�Chem pro


gram� To demonstrate the use of partitioning� the LSDA functional has been tested for the

�rst
row atoms and the molecules H�� N�� F�� FH� OH�� NH�� and CH�� The orbital basis

used is �
����G��df��p
� with the standard SG
� quadrature grid� The geometries for the

molecules are those of MP� with the �
��G�d
 basis set�

The total energies are listed in Table ���� The �rst column is the energy obtained by

solving the KS equations for the LSDA functional� The other columns are energies using this

density� The second column gives the sum of the �rst three terms in equation ����
 and the

third is this with the Dirac exchange energy added� The �nal column lists EKS as de�ned

by equation ����
�

The di�erences EKS�EHF � where EHF are regular HF calculations with the same orbital

basis and geometry� are listed in Table ���� They arise because of di�erences between the

LSDA and HF densities� Note that� as expected� EKS � EHF � The magnitudes of these

di�erences are small when compared with correlation energies� but clearly not negligible�

This must be taken into account when comparing DFT correlation energies with conventional

values based on an HF starting point�

The �rst partition results are presented in Table ���� The LSDA correlation functional

has been partitioned with A � � and B � �� The MP� correlation energies starting from the

KS density have also been partitioned� Note that these are full correlation energies� taking

account of all electron pairs�

Table ��� lists the DFT correlation energies� split into core
core� core
valence� and valence


valence partitions� along with the total DFT correlation energy� The valence
valence conven


tional correlation energy is also listed� The conventional core
core and core
valence partitions

are not listed� as the orbital basis gives a very poor description of inner
shell correlation� lim


iting the signi�cance of the results� The valence
valence results using QCISD�T
 based on

the HF starting point are also listed for comparative purposes� They have been incremented

by the values in Table ���� thus allowing for the KS reference�
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Table ���� Total Energies for Partition Molecules �hartrees


LSDA NoXC HFS EKS

H 
������� 
������� 
������� 
�������

He 
������� 
������� 
������� 
�������

Li 
������� 
������� 
������� 
�������

Be 
�������� 
�������� 
�������� 
��������

B 
�������� 
�������� 
�������� 
��������

C 
�������� 
�������� 
�������� 
��������

N 
�������� 
�������� 
�������� 
��������

O 
�������� 
�������� 
�������� 
��������

F 
�������� 
�������� 
�������� 
��������

Ne 
��������� 
��������� 
��������� 
���������

H� 
������� 
������� 
������� 
�������

N� 
��������� 
�������� 
��������� 
���������

F� 
��������� 
��������� 
��������� 
���������

FH 
�������� 
�������� 
�������� 
���������

OH� 
�������� 
�������� 
�������� 
��������

NH� 
�������� 
�������� 
�������� 
��������

CH� 
�������� 
�������� 
�������� 
��������

Table ���� Energy Di�erences EKS �EHF �mhartrees


H ���� Ne �����

He ���� H� ����

Li ���� N� �����

Be ���� F� �����

B ���� FH �����

C ���� OH� �����

N ���� NH� �����

O ����� CH� �����

F �����
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Table ���� Spin Components of the Correlation Energy �mhartrees


DFT�LSDA
 conventional�MP�


�� �� �� �� �� ��

H ����� � � � � �

He ����� ����� ����� � � �����

Li ����� ����� ����� ���� � �����

Be ����� ����� ������ ���� ���� �����

B ����� ����� ������ ���� ���� �����

C ������ ����� ������ ����� ���� �����

N ������ ����� ������ ����� ���� �����

O ������ ������ ������ ����� ���� ������

F ������ ������ ������ ����� ����� ������

Ne ������ ������ ������ ����� ����� ������

H� ����� ����� ����� � � �����

N� ������ ������ ������ ����� ����� ������

F� ������ ������ ������ ����� ����� ������

FH ������ ������ ������ ����� ����� ������

OH� ������ ������ ������ ����� ����� ������

NH� ������ ������ ������ ����� ����� ������

CH� ������ ������ ������ ����� ����� ������
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Table ���� Core
Valence Components of the Correlation Energy �mhartrees


DFT�LSDA
 conventional

total core core
val� val� val��MP�
 val��QCISD�T



H ����� � � ����� � �

He ������ � � ������ ����� �����

Li ������ ������ ���� ����� � �

Be ������ ������ ���� ����� ����� �����

B ������ ������ ���� ������ ����� �����

C ������ ������ ���� ������ ����� �����

N ������ ������ ����� ������ ����� ������

O ������ ������ ����� ������ ������ �����

F ������ ������ ����� ������ ������ ������

Ne ������ ������ ����� ������ ������ ������

H� ����� � � ����� ����� �����

N� ������ ������ ����� ������ ������ ������

F� ������� ������ ����� ������ ������ ������

FH ������ ������ ���� ������ ������ ������

OH� ������ ������ ���� ������ ������ ������

NH� ������ ������ ���� ������ ������ ������

CH� ������ ������ ���� ������ ������ ������
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With the use of partitioning twice� the ��� �� and �� spin components of the valence
only

correlation energy can be calculated� These� along with the corresponding MP� partitions

are listed in Table ����

Table ���� Spin Components of the Valence
Valence Correlation Energy �mhartrees


DFT�LSDA
 conventional�MP�


�� �� �� �� �� ��

Li ����� � � � � �

Be ����� ����� ����� � � �����

B ����� ����� ����� ���� � �����

C ����� ����� ����� ����� � �����

N ������ ����� ������ ����� � �����

O ������ ����� ������ ����� ���� ������

F ������ ����� ������ ����� ����� ������

Ne ������ ������ ������ ����� ����� ������

N� ������ ������ ������ ����� ����� ������

F� ������ ������ ������ ����� ����� ������

FH ������ ������ ������ ����� ����� ������

OH� ������ ������ ������ ����� ����� ������

NH� ������ ������ ������ ����� ����� ������

CH� ����� ����� ������ ����� ����� ������

��� Discussion

The familiar overestimation of the LSDA functional is demonstrated by the total correla


tion energies in Table ���� These results are close to previously published LSDA correlation

energies ������ Correct total atomic correlation energies �relative to the HF reference
 are

known to range from �� mhartrees for helium to ��� mhartrees for neon ������ Thus� LSDA

is overestimating by roughly a factor of two�

The work of Stoll et al� ��������� closely resembles Table ���� They partitioned the LSDA

correlation energy in this manner� but then compared just the �� component to the total

correlation energy from conventional theory� However� as can be seen from the �rst two

columns of Table ���� the �� and �� components are too large to ignore� The spin
parallel
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contributions are partly spurious� as indicated by the signi�cant nonzero values for H� He

and H�� These represent a self
correlation for single electrons� These e�ects are undoubtedly

present in the larger systems� contributing to their large �� and �� values ! far greater

than their corresponding conventional results� even accounting for the poor treatment of core

electrons with MP� for this basis� The conventional results do show that spin
parallel e�ects

are signi�cant� beyond that accounted for by the exchange term�

The spin
antiparallel components� shown in Table ���� are still signi�cantly larger for

LSDA than MP�� For the helium atom� where there is only �� correlation� the LSDA value

of �� mhartrees is considerably larger than the known accurate value of �� mhartrees� even

after accounting for the ��� mhartree correction of Table ���� but no longer by a factor of two�

The larger systems show even greater overestimation� but note that the MP� results will be

underestimates� due to the crude description of the inner
shell conventional correlation�

If the LSDA error was roughly constant for each atom� a convenient cancellation of

errors would occur when examining most chemical properties� To see if this is the case the

contributions of parallel and antiparallel correlation to chemical binding energies are listed

in Table ���� along with their conventional counterparts�

Table ���� Spin Components of the Correlation Binding Energy �mhartrees


DFT�LSDA
 conventional�MP�


�� � �� �� total �� � �� �� total

H� ���� ����� ����� � ����� �����

N� ���� ����� ����� ����� ������ ������

F� ���� ����� ����� ����� ������ ������

FH ���� ����� ����� ����� ����� �����

OH� ���� ����� ����� ����� ����� ������

NH� ����� ������ ������ ����� ������ ������

CH� ����� ������ ������ ����� ������ ������

The conventional total correlation contribution shows that electron correlation does play

a major role in binding� The DFT totals are mostly lower �with the exception of H� and

CH�
� with F� being remarkably lower� When broken down into the spin components� the

contributions of parallel spins are quite small by LSDA� even though the individual parallel

values of Table ��� are large� The MP� results indicate that LSDA underestimates the paral




Density Functional Partitions ��

lel contribution �except for H�� where there is none
� The LSDA �� correlation contributions

to binding show improvement when compared with the general overestimation of total corre


lation energies by a factor of two� However� there are wide variations with the type of bond�

LSDA describes moderately well the �� contributions to bonds involving hydrogen� Yet

the triple bond in N�� where antiparallel correlation in the three pairs is a major stabilizing

factor� shows an LSDA underestimation by more than a factor of two� This is particularly

disturbing� remembering that the total correlation energies are overestimated by about this

factor� The LSDA functional also badly underestimates the �� correlation contribution to

binding in the F� molecule� F� is bound by LSDA �just
� however �� mhartrees of the ���

mhartrees come from the exchange part� when conventional HF does not bind F��

Turning to the core
valence separations of Table ���� the �rst thing to note is that the inter

core
valence correlation energies are small� This is not surprising as the respective orbitals are

principally located in di�erent spatial regions� Comparison with good conventional numbers

is not really possible� due to the de�ciencies of the basis set� On the whole� the LSDA

functional shows a good separation of correlation energy into the core and valence regions�

Although good MP� core
core correlation numbers are unavailable� the atomic LSDA

values should be close to those for the corresponding two
electron ions �He� Li�� Be���

B��� � � � 
� It is known that these remain fairly constant� approaching a limit of about ��

mhartrees ������ The LSDA numbers here are larger by up to a factor of four� and show a

pattern of increasing steadily� This is obviously a major contribution to the overestimation

of total correlation energies by the LSDA functional�

The valence
valence LSDA correlation energies are also too large� by roughly a factor

of two� Again� the inadequate MP� basis set provides a worrying underestimation� yet the

results are similar for the more sophisticated QCISD�T
 numbers�

The LSDA functional provides roughly a constant error for the core
core correlation

components in moving from atom to molecule� Thus the failure to accurately describe the

inner
shell electrons is not related to any failures in the description of chemical bonding� This

is also true of the core
valence component� This suggests that the valence
only behaviour

of the LSDA functional is more important� The spin
component analysis of the valence

correlation energies is summarized in Table ���� The orbital basis is of better quality in the

valence region� allowing a more satisfactory comparison with conventional MP� results�

The spin
parallel components of valence correlation energies are still too large� and again

show spurious self
correlation e�ects �for example Li and Be� where the valence correlation



Density Functional Partitions ��

should be zero
� The LSDA �� terms� however� do show a far better agreement with MP�

than the all
electron results� LSDA is too large again� but only by a factor of about ���� not

two as before�

The partitions can be continued to examine the spin components of the binding energy

using only the valence density� which are listed in Table ����

Table ���� Spin Components of the Valence Correlation Binding Energy �mhartrees


DFT�LSDA
 conventional�MP�


�� � �� �� total �� � �� �� total

N� ���� ����� ����� ����� ������ ������

F� ���� ����� ����� ����� ������ ������

FH ���� ����� ����� ����� ����� �����

OH� ���� ����� ����� ����� ����� ������

NH� ����� ������ ������ ����� ������ ������

CH� ����� ������ ������ ����� ������ ������

As expected� the performance of the valence
only theory �for binding
 is similar to the

all
electron results of Table ���� The correlation bindings are mostly too small and there is

incorrect division between the spin
parallel and antiparallel components� This is consistent

with a good cancellation of errors with the inner
shell contributions in moving from atoms

to molecules�

Finally� in Table ���� the spin components of the correlation energy contributions to the

ionization energies are presented� The total LSDA contributions of the �ve molecules studied

are all about �� mhartrees� This bears no resemblance to the large variations seen for the

conventional values� The LSDA parallel and antiparallel components are roughly constant

as well� with antiparallel providing the majority of the total� This� again is in contrast to

the MP� results� which show a roughly equal parallel'antiparallel contribution� with the

components changing in similar ways to the total� Table ��� demonstrates a failure of the

LSDA functional�

��� Conclusions

The work presented here shows that it is possible to compare the energy partitions of

density functionals with more conventional theories� This is achieved by using the Kohn
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Table ���� Spin Components of the Correlation Ionization Potentials �mhartrees


DFT�LSDA
 conventional�MP�


�� � �� �� total �� � �� �� total

N� ����� ����� ����� 
����� 
���� 
�����

FH ����� ����� ����� ����� ����� �����

OH� ����� ����� ����� ����� ����� �����

NH� ����� ����� ����� ����� ����� �����

CH� ����� ����� ����� ���� ����� �����

Sham single determinant as a reference� It is possible to use the same procedure to determine

the spin orbital or density partitions of core'valence or � spin'� spin �or indeed any partition

into non
overlapping spin orbitals
�

When applied to the LSDA functional� spin partition shows a strong overestimation of the

parallel spin components �including spurious one
electron e�ects
� Antiparallel correlation

is also overestimated� but by a smaller factor� The core'valence partitioning reveals core

correlation values which are much too large� These values also do not approach any limiting

value as they should� One bonus of the LSDA functional� though� is that these core values

remain fairly constant in moving from atom to molecule� allowing a systematic cancellation

of errors for most chemical properties� The LSDA functional does� however� show better per


formance in the valence region� overestimating the antiparallel contributions by only a factor

of two �there are still major errors for the parallel components here
� However� the major

failing of the LSDA functional is the relative contributions of ����� and �� correlation to

binding energies� The �� contribution to binding is usually too low� even though the LSDA

functional generally overestimates the binding energy�

The partitioning method developed here is applicable to any energy functional� allow


ing a more detailed evaluation of a functional than was previously possible� Hopefully the

study of the piecewise inadequacies of future functionals will allow the convergence towards

an accurate� correct energy functional� The LYP functional� which is used to develop the

empirical density functional of the following chapter� for example� does not have the spurious

one
electron e�ects seen here for the LSDA functional�



Chapter �

Empirical Density Functionals�

��� Introduction

Exchange
correlation functionals are often tested by systematic comparison of computed

total energies with high
quality experimental data� The most common test set used for

such studies ���� ���� ���� ���� is the G� set of atomization energies� ionization potentials�

electron a�nities and proton a�nities ����� These tests showed a signi�cantly improved

agreement with experiment by the introduction of local density gradients into the functionals�

Recently� a portion of the Fock exchange has been included with the exchange functional ������

With adjustment of some of the parameters involved� the mean absolute deviations between

calculation and experiment for chemical energetics begin to approach that for G� theory�

This chapter uses the G� experimental data to examine some of the common functionals

in use today� This is carried out with three main objectives in mind� Firstly� the emphasis on

empirical parameterization is increased� Most previous functionals have �rst been constrained

to satisfy certain limiting conditions� for example the correct behaviour for the uniform

electron gas and the scaling at large distances� and then use parametization for the middle

ranges� By removing these constraints a functional of high practical value may be attainable�

The results may also give some indication of the changes to functionals that are implied by

the experimental data� and thus point the way for future functional improvements�

Previously it has been implicitly assumed that a functional designed to be optimal for

large basis sets will be equally suitable for small basis set calculations� In fact� E� Bright

Wilson�s argument �see section ���
 holds for the density from a small basis set� as well as an

in�nite one� Yet one would expect the ultimate functionals for the di�ering basis sets to be

�The work described in this chapter has been carried out in collaboration with Prof� John Pople
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quite di�erent� A functional designed for smaller systems would also have a high practical

value as it would allow large systems �which require small basis sets
 to be studied more

accurately�

The third objective is to examine the necessity of including Fock exchange in order to

obtain good agreement with experiment� Becke has alleged that �a small exact
exchange

component is a natural and necessary constituent of any exchange
correlation approximation

aiming for accurate molecular energetics	 ������ However� doing so introduces non
local

e�ects and consequent computational complications ����� ����� and should therefore only be

included if it is really needed�

��� General Theory

The orbital basis used throughout this chapter is �
���G*� This is small enough to allow

the study of large molecules� yet also has enough complexity to contain the general features

required of a basis set ������ The G� geometries are the MP�'�
��G* geometries� and zero


point vibrational corrections are calculated from Hartree
Fock harmonic frequencies� From

the original G� set the two excited states� N�
� and SH�

� � have been removed� The atomization

energy and proton a�nity of H� and the ionization potentials of inert gas atoms have been

added� Also the electron a�nity of the H atom has been excluded� as the �
���G* basis set

does not place a di�use orbital on hydrogen�

The quality of a functional is judged by the root
mean
square �RMS
 deviation of the

computed results from the experimental values for the ��� data points� This requires the

evaluation of self
consistent energies on ��� atoms and molecules� The RMS deviation is

minimized with respect to parameters included in the functionals� Linear combinations of

di�erent functionals and combinations of the same functional with di�erent parameters are

considered� This optimization can be carried out in two ways� In the �rst� termed "internal�

optimization� the full functional is written as a linear combination of component functionals

Exc �

Z X
i

cifi�
�� 
��r
��r
�
 dr ����


with adjustable coe�cients ci� This functional is then used to calculate the ��� self
consistent

energies� leading to an RMS deviation from experiment� which is minimized with respect to

the ci� The Hartree
Fock exchange can be included by adding another term to this sum with

an additional c coe�cient� This is the conventional mixing method introduced by Becke ������
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The second method used is termed "external� optimization� Here the ��� energies are

calculated for each of the component functionals

Ei
xc �

Z
fi�
�� 
��r
��r
�
 dr� ����


Note that� if there are n functionals� this will require the ���n single point Kohn
Sham

calculations� The energies for each functional can be arranged as n vectors Ei and then

combined� using coe�cients ci� to give a single set of ��� energies as a vector

E�c
 �

nX
i

ciE
i� ����


This mixture is� in e�ect� a "linear combination of model chemistries� de�ned by the coe�


cients ci� As before� the RMS deviation from experiment is minimized with respect to the

ci�

While the second type could be used as a model� the internal optimization is clearly

preferable as only one calculation is required �compared with n calculations
� However opti


mization by the "external� method is much faster as it only involves quadratic minimization of

the coe�cients� Thus the external optimization can be used �rst as a pointer to worthwhile

candidates for internal optimization�

��� Results

The BLYP functional is known to perform quite well on the G� set ������������� making it

an ideal starting point for the optimizations� The results of modifying the BLYP parameters

are listed in Table ����

Table ���� Modi�ed BLYP RMS deviations �kcal'mol


Functional RMS deviation

B�������

LYP �����

B�������

LYP �����

B�������
 � ������LYP �����

B
LYP�optimum
 �����

The unmodi�ed BLYP functional �with Becke�s � parameter of ������ in the exchange

part
 gives an RMS error of ����� kcal'mol� The corresponding mean absolute deviation is

���� kcal'mol� Next� the Becke � parameter was optimized� moving to ������� giving an RMS
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deviation of ����� kcal'mol� Third� an optimal linear combination of the original Becke and

LYP parts is found� lowering the RMS deviation to ����� kcal'mol� A �nal� fuller optimization

only lowers the RMS error to ����� kcal'mol� �This has a Dirac coe�cient of ������ times the

original� a � value of �������� and LYP parameters of a� b� c� d � ������ ������ ����� ������


The next step is to see the e�ect of the di�erent � values through external mixing� By

taking a combination of B�������

LYP� B�������

LYP� Hartree
Fock
Slater and Hartree


Fock
Becke theories the RMS deviation is lowered to ����� kcal'mol� Clearly the linear

combination of two Becke functionals is a better exchange functional than either separately�

The external optimization coe�cients are

�����B�������
LYP � �����B�������
LYP � �����HFS � �����HFB�������
� ����


These coe�cients were then re�ned via an internal optimization� along with a redetermination

of the LYP parameters� The complete functional is then

Exc � ��������ED��
x � �������+EB��

x �������
 � �������+EB��
x �������


�ELY P
c ������� ������ ����� ������


����


where +EB��
x represents the Becke correction� that is the B�� functional without the Dirac

term� With this functional the RMS deviation is lowered to ����� kcal'mol and the mean

absolute deviation is ����� kcal'mol� The non
LYP part of the above functional has been

termed the double
Becke functional� while the complete functional is called "Empirical Den


sity Functional �� or EDF��

Table ���� External linear mixing of Hartree
Fock �kcal'mol


Functional Combination RMS deviation

BLYP � HFB�������
 � HFS �����

BLYP � HFB�������
 � HFS � HF �����

EDF� � HFB�������
 � HFB�������
 � HFS � BLYP �����

EDF� � HFB�������
 � HFB�������
 � HFS � BLYP � HF �����

The third step is to investigate the e�ect of adding a fraction of Fock exchange to EDF��

Table ��� gives the results of external mixing of Hartree
Fock with BLYP and EDF� plus

their components� Clearly� there is strong HF mixing with BLYP� but virtually none with

EDF�� This is con�rmed by trying to mix in HF with an internal optimization of the
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EDF� components and Fock exchange� The HF coe�cient is less than ����� and there is no

signi�cant lowering of the RMS error�

To asses the usefulness of EDF� as a density functional it has been used to obtain the

thermochemistry of the molecules in the G� set� using the �
��G* basis� The results are

listed in Table ��� and Table ���� In addition� the BLYP and B�LYP functionals have

been included for comparison� Perhaps surprisingly� B�LYP performs quite poorly� being

inferior to both BLYP and EDF�� However� the parametization of the B�LYP functional

was carried out using what is� in e�ect� an in�nite basis� It is therefore not unreasonable

to expect performance to improve if it was reoptimized for the �
��G* basis� An internal

reoptimization along these lines shows a decrease in the Fock exchange coe�cient to about

�&� with an RMS error of ���� kcal'mol� still considerably inferior to EDF��

The overall improvement in moving from B�LYP �or BLYP
 to EDF� is largely due to the

better atomization energies and proton a�nities� The electron addition and removal energies

are only slightly superior� It is interesting that the worst EDF� results �atomization energies

of SO� and O�� ionization energy of O�� electron a�nity of Cl�� and proton a�nity of H�
 are

also problematic cases for BLYP and B�LYP� This con�rms the underlying similarity of each

of the three functionals� that they are all made from essentially the same main components�

By writing density functionals in the form

Exc�
� �

Z

����r
g�x
 dr ����


the double
Becke functional can be compared with the original B�� form� The B�� g�x
 is

gB����� x
 � C� � �x�

� � ��x sinh���x

����


with � � ������ and C� is the coe�cient of the Dirac functional� The new g�x
 is

gdoubleB�x
 � ��������C� � �������gB���������� x
 � �������gB���������� x
 ����


These two functions are plotted in Figure ����

At x � � the double
Becke value is slightly below that of the uniform electron gas� The

double
Becke curve is also much �atter at the origin� This can be seen from the initial term

in the Taylor expansion

g�x
 � g��
 �
�

�
g����
x� � � � � ����


which is g����
 � ��������� compared with ������� from the original B�� form� The double


Becke value is much closer to the Sham
Kleinman value of �������� � Also� the double
Becke

curve is below B�� until x � � and the curves cross again at x � ��� �
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Table ���� Deviations from experiment for various functionals

Exp� Exp�
BLYP Exp�
B�LYP Exp�
EDF�

atomization energies �kcal'mol


H� ����� 
��� 
��� 
���

LiH ���� ��� ��� ���

BeH ���� 
��� 
��� 
���

CH ���� 
��� ��� 
���

CH��
�B�
 ����� ��� ��� 
���

CH��
�A�
 ����� ��� ��� ���

CH� ����� ��� 
��� 
���

CH� ����� ��� ��� 
���

NH ���� 
��� 
��� 
���

NH� ����� 
��� 
��� 
���

NH� ����� ��� ��� 
���

OH ����� ��� ��� ���

OH� ����� ��� ���� ���

FH ����� ��� ��� ���

SiH��
�A�
 ����� ��� ��� 
���

SiH��
�B�
 ����� ��� ��� 
���

SiH� ����� ��� ��� 
���

SiH� ����� ��� ��� ���

PH� ����� 
��� 
��� 
���

PH� ����� ��� ��� ���

SH� ����� ��� ��� ���

ClH ����� ��� ��� ���

Li� ���� ��� ��� ���

LiF ����� ��� ��� ���

HCCH ����� ��� ���� ���

H�CCH� ����� ��� ��� 
���

H�CCH� ����� ��� ��� 
���

CN ����� 
��� ��� 
���

HCN ����� 
��� ��� 
���
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Table ��� �continued


Exp� Exp�
BLYP Exp�
B�LYP Exp�
EDF�

CO ����� ��� ���� ���

HCO ����� 
��� ��� 
���

H�CO ����� 
��� ��� 
���

H�COH ����� ��� ��� 
���

N� ����� 
��� ��� ���

H�NNH� ����� 
��� ��� 
���

NO ����� 
��� ��� 
���

O� ����� 
���� ��� 
����

HOOH ����� ��� ���� 
���

F� ���� 
��� ��� 
���

CO� ����� 
��� ���� 
���

Na� ���� 
��� 
��� ���

Si� ���� ��� ��� ���

P� ����� ��� ���� ���

S� ����� ��� ��� ���

Cl� ���� ��� ���� ���

NaCl ���� ��� ��� ���

SiO ����� ��� ���� ���

SC ����� ��� ���� ���

SO ����� 
��� ��� 
���

ClO ���� 
��� ��� 
���

ClF ���� 
��� ��� 
���

CH�Cl ����� ��� ��� 
���

Si�H	 ����� ���� ��� ���

CH�SH ����� ���� ��� ���

HOCl ����� ��� ���� ���

SO� ����� ���� ���� ����

ionization potentials �eV


H ����� ���� ���� ����

He ����� 
���� 
���� 
����
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Table ��� �continued


Exp� Exp�
BLYP Exp�
B�LYP Exp�
EDF�

Li ���� 
���� 
���� 
����

Be ���� ���� ���� ����

B ���� 
���� 
���� 
����

C ����� 
���� 
���� 
����

N ����� 
���� 
���� 
����

O ����� 
���� 
���� 
����

F ����� 
���� 
���� 
����

Ne ����� 
���� 
���� 
����

Na ���� 
���� 
���� 
����

Mg ���� ���� ���� ����

Al ���� ���� ���� ����

Si ���� ���� ���� ����

P ����� ���� ���� ����

S ����� 
���� 
���� ����

Cl ����� ���� ���� ����

Ar ����� ���� ���� ����

CH� ����� ���� ���� ����

NH� ����� ���� ���� ����

OH ����� 
���� 
���� 
����

OH� ����� ���� ���� ����

FH ����� ���� ���� ����

SiH� ����� ���� ���� ����

PH ����� ���� ���� ����

PH� ���� ���� 
���� 
����

PH� ���� ���� ���� ����

SH ����� ���� ���� ����

SH� ����� ���� ���� ����

ClH ����� ���� ���� ����

HCCH ����� ���� ���� ����

H�CCH� ����� ���� ���� ����
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Table ��� �continued


Exp� Exp�
BLYP Exp�
B�LYP Exp�
EDF�

CO ����� ���� 
���� ����

N� ����� ���� 
���� ����

O� ����� 
���� 
���� 
����

P� ����� ���� 
���� ����

S� ���� 
���� 
���� 
����

Cl� ����� ���� ���� ����

ClF ����� ���� 
���� ����

SC ����� 
���� 
���� 
����

electron a�nities �eV


C ���� 
���� 
���� 
����

CH ���� 
���� 
���� 
����

CH� ���� 
���� ���� ����

CH� ���� ���� ���� ����

CN ���� 
���� 
���� ����

NH ���� 
���� ���� ����

NH� ���� ���� ���� ����

NO ���� 
���� 
���� 
����

O ���� 
���� 
���� 
����

OH ���� ���� ���� ����

O� ���� 
���� 
���� ����

F ���� 
���� 
���� 
����

Si ���� ���� ���� ����

SiH ���� ���� ���� ����

SiH� ���� ���� ���� ����

SiH� ���� ���� ���� ����

P ���� 
���� 
���� 
����

PH ���� ���� ���� ����

PH� ���� ���� ���� ����

PO ���� 
���� 
���� 
����

S ���� 
���� 
���� ����
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Table ��� �continued


Exp� Exp�
BLYP Exp�
B�LYP Exp�
EDF�

SH ���� ���� ���� ����

S� ���� ���� 
���� ����

Cl ���� ���� 
���� ����

Cl� ���� 
���� 
���� 
����

proton a�nities �kcal'mol


H� ����� ���� ���� ���

HCHH ����� ��� 
��� 
���

NH� ����� ��� 
��� 
���

H�O ����� ��� ��� ���

SiH� ����� ��� ��� ���

PH� ����� ��� ��� ���

H�S ����� ��� ��� ���

HCl ����� ��� ��� ���

Table ���� RMS errors for functionals

RMS Errors �kcal'mol
 Exp�
BLYP Exp�
B�LYP Exp�
EDF�

atomization energies ���� ���� ����

ionization potentials ���� ���� ����

electron a�nities ���� ���� ����

proton a�nities ���� ���� ����

��� Conclusions

There are three principal conclusions from the work presented in this chapter� Firstly�

the g�x
 from the B�� functional di�ers quite considerably from that obtained by optimizing

with respect to experimental energies� A new functional� EDF�� has been found which�

although more empirical than those before� has been designed with a small basis set in mind�

Thus� it should be suitable for computations on large molecules� For the �
���G* basis set

it appears to be more accurate than the extremely popular B�LYP functional� Finally� there

is no signi�cant improvement when the Fock exchange functional is added to the empirical

mix� It should be emphasized that this result is speci�c to the small basis set used� and may
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Figure ���� The g�x
 functions for the B�� and double
Becke exchange functionals

2 4 6 8 10 12 14

-1.3

-1.2

-1.1

x

gdoubleB�x


gB���x


change if larger bases are used� However� it does show that the present accuracy attainable

by density functionals can be achieved without the expensive Fock term�



Chapter �

Faster Integral Calculation

��� Introduction

One thing that all the calculations in this thesis have in common is their reliance on the

calculation of a number of two
electron repulsion integrals �ERIs
 �for example� equation

�����

 over contracted Gaussian
type basis functions� As mentioned in section ������
� the

number of ERIs grows as O�N�
 and has become the computational bottleneck for most HF

and DFT calculations� Because of this� the e�cient calculation of ERIs has been the focus of

much research �������#����� Even the new O�N
 approaches for construction of the Coulomb

matrix require the computation of ERIs for short
range interactions�

It should be noted that almost all ERIs calculated at present are over Gaussian type

orbitals� This is entirely due to the Gaussian product rule� that the product of two Gaus


sian functions is another Gaussian� centered somewhere on the line connecting the �rst two

centers� Thus� any four
center ERI involving GTOs can immediately be reduced to a two


center integral �over GTOs
� a simpli�cation not available with STOs� Thus the fundamental

�contractionless and momentumless
 integral

I �

ZZ
e��jr��Aj

�

e��jr��Bj
� �

r��
e��jr��Cj

�

e��jr��Dj
�

dr�dr� ����


becomes

I � U

ZZ
e�
jr��Pj

� �

r��
e��jr��Qj

�

dr�dr�� ����


where

U � exp

� ���
� � �

jA�Bj�
	

exp

� ���
� � �

jC�Dj�
	

����
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and

� � � � � � � � � � ����


P �
�A� �B

� � �
Q �

�C� �D

� � �
� ����


How equation ����
 is then computed depends on the integral method used� Each method

has a number of subtle peculiarities� but all involve four basic steps �although the order of

action varies from method to method
�

The operator step� O� generates the momentumless two
center integrals over the two


electron operator� In the PRISM method ����� �which includes the McMurchie
Davidson

������ Obara
Saika ������ Head
Gordon
Pople ������ and Ten
no ����� as special cases
 this

forms the ����m� integrals�

In the momentum step L� recursive identities are used to build the momentumless quan


tities into those of the required angular momenta� This is where the bulk of integral research

has been focused over the last two decades ����#���� ���#�����

The contraction step gathers together the primitive �uncontracted
 components to form

fully contracted contributions� The main advance of the PRISM method was the execution

of the contraction step at the most optimal time� Previously� the contraction step has always

been after the operator step �in the case of PRISM� forming the ��
�m�s
� The work presented

in this chapter describes how contraction can be carried out �rst� thus providing the prospect

of massive computational savings� and also forming the CO path to the COLD PRISM ������

In the density step D� the contracted quantities are multiplied by the density matrix

elements P�� � This step is usually termed "digestion� of the integrals and was traditionally

performed last� One of the discoveries of the COLD PRISM� however� is that large time

savings can be achieved by performing this step earlier�

��� Traditional ����m� Generation

Momentum is built up by recurrence relations which use �L� �
KBraKKet �where KBra

is the number of Gaussians on center A times the number at center B� and similarly for

KKet with centers C and D
 ����m�s �one m for each degree of momentum� L
�

The simplest ����m� �that is� ������
 is the fundamental electron
repulsion integral� equation

����
� The integration is performed by �rst replacing each of the three factors by its Fourier
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representation� giving �after some re
ordering


������ ����
��U

�
��

��

���� ZZZ
e�k

�

�
��
�k�

�
���e�ik��P�ik��Q

��

k��

���
��
Z
eir���k��k�� dr� ���
��

Z
eir���k��k�� dr� dk�dk�dk�� ����


The last two integrals above are Fourier representations of the three
dimensional Dirac delta

function� allowing simpli�cation to

������ �
U

����
���

ZZZ
e�k

�

�
��
�k�

�
����ik��P�ik��Q ��

k��
��k� � k�
��k� � k�
 dk�dk�dk�� ����


Remembering that the Dirac � function has the sampling property ofZ
��r� � r�
h�r�
 dr� � h�r�
 ����


for any function h�r
 allows the triple integral to collapse to the single integral

������ �
���U

���
���R

Z �

�

sinu

u
e�u

����T� du ����


where� for convenience and computational e�ciency� the following variables have been intro


duced�

R � Q�P �����


T � ��R� �����


�� �
��

� � �
� �����


The �nal integration is usually performed with the introduction of a special function Gm�T
�

Gm�T
 �

r
�

�

Z �

�
t�me�Tt

�

dt �����


giving

������ � U
p

���G��T
� �����


The higher momentum ����m� formulae can be found via the relation

����m��� �
�d����m��dR

R
�����


producing the general formula

����m� � U


���

�m����
Gm�T
� �����
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If the value of T is less some critical value� the function GL�T
 is calculated using Chebyshev

interpolation ������ The Gm�T
� � � m � L are then calculated by downward recursion

using

Gm�T
 �
�

�m � �

�
�TGm���T
 � e�T

�
� �����


Note that this also requires an interpolation for e�T�

If T is greater than a critical value� the distributions overlap negligibly� and Gm�T
 can

be approximated

Gm�T
 � ��m� �
$$

��T
m����
�����


and the ����m� reduces to the classical multipole formula

����m� �

�
U

R

��
�

R�

��
�

R�

�
� � �

�
�m� �

R�

�
� �����


which can be computed extremely fast via recursion�

The ��
�m�s are formed if contraction is carried out immediately after forming the prim


itives� Contraction can occur early or late� depending on the PRISM path however� it is

advantageous to contract early if the total degree of contraction �Ktot � KBraKKet
 is high�

With the new algorithms mainly reducing the cost of high momentum� the point is fast be


ing approached where ERI generation is dominated by making and contracting the ����m�s�

During contraction� scalings are introduced which are required for the later transformations�

so a ��
�m� is more accurately represented as�

a�b�p���

�m�
c�d�q� �

KBraX KKetX ���
a
�

���
b
�

��� � ��
p�
����m� ���
c

�

���
d
�

��� � ��
q�
� �����


The double sum above is the problem� The amount of work required to calculate ��
�m�

scales with KBraKKet� Note that this means two interpolations and a divide are calculated

KBraKKet times$ The rest of this chapter presents a method which scales independently of

KBra and KKet�

��� The Bra Concentric Case

For simplicity the special case of A � B is considered �rst� As well as being conceptually

simpler it also produces computational savings which are useful� so this special case has been

coded into the Q�Chem program�
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Figure ���� The Bra concentric case
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The �rst �and most drastic
 approximation is to assume that the Bra and Ket are well

separated� something equivalent to assuming that all Gaussians on a shell
pair are point

charges�

Rij is generated from the length DB� which is the same for all elements of the contracted

shell
pair and therefore only needs to be calculated once per ��
�m�� Note that yj is the

fraction that Qj is along DC� Computational time can be saved if the formula generates the

reciprocal of Rij� avoiding a costly divide� Now� by simple vector addition�

Rij � DB �DCyj �����


R�
ij � DB �DB � �DC �DByj � DC �DCy�j �����


� jDBj� � �jDCjjDBj cos �yj � jDCj�y�j �����


where

cos � �
DC �DB
jDCjjDBj � �����


therefore�

�

Rij
�

�

jDBj

s
�� �

jDCj
jDBjyj cos � �

jDCj�
jDBj� y

�
j � �����


Using a binomial expansion and the Legendre polynomials Pk� the square root is replaced by

an in�nite series

�

Rij
�

�

jDBj
�X
k��

Pk�cos �


� jDCj
jDBjyj

�k
�����


�
�

jDBj
�X
k��

a�ky
k
j �����
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with

a�k �

� jDCj
jDBj

�k
Pk�cos �
� �����


The magnitude of the kth term is bounded by

� jDCj
jDBj

�k
because � � yj � � and

�� � Pk�cos �
 � �� Therefore the series will converge whenever the ratio of jDCj to

jDBj is less than one� The coe�cients a�k can also be generated recursively �providing easier

computation
�

Pk�cos �
 �

�
�k � �

k

�
cos �Pk���cos �
�

�
k � �

k

�
Pk���cos �
 �����


� jDCj
jDBj

�k
Pk�cos �
 �

� jDCj
jDBj

�k ��k � �

k

�
DC �DB
jDBjjDBj

� jDBj
jDCj

�
Pk���cos �


�
� jDCj
jDBj

�k �k � �

k

�
Pk���cos �
 �����


a�k �

�
�k � �

k

�
DC �DB
jDBj� a��k��� �

�
k � �

k

� jDCj�
jDBj�a��k���� �����


The power of this group of formulae is that Rijs can be calculated for the entire ��
�m�

using only one measurement that involves both shell
pairs �the distance DB
� The other

information required �the distance DC and the fractional lengths yj
 is all within the ket

shell
pair� and can therefore be constructed before pairing all shell
pairs� thus removing a

large fraction of the O�N�
 work� at the cost of a little extra O�N
 work� The general case

is now presented�

��� The Non�Concentric Case

Proceeding in a similar manner to the concentric case� the well
separated approximation

is invoked before developing a general formula for Rij�

Rij � ABxi � DCyj �DB �����


R�
ij � jDBj� � �AB �DBxi � �DC �DByj � jABj�x�i � �AB �DCxiyj � jDCj�y�j �����


� jDBj� � �jABjjDBj cos �xxi � �jDCjjDBj cos �yyj � jABj�x�i
� �jABjjDCj cos	xiyj � jDCj�y�j  �����
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Figure ���� The non
concentric case
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therefore� the reciprocal of Rij is

�

Rij
�

�

jDBj
�

�� �
jABj
jDBjxi cos �x � �

jDCj
jDBjyj cos �y �

jABj�
jDBj�x

�
i

��
jABjjDCj
jDBjjDBjxiyj cos	 �

jDCj�
jDBj� y

�
j

�����
�����


�
�

jDBj


�� ��i cos �x � ��j cos �y � ��i � ��i�j cos	 � ��j

�����
�����


where

�i �
jABj
jDBjxi �j �

jDCj
jDBjyj �����


which leads to�

�

Rij
�

�

jDBj
�X
k��

�X
k��

dkl�
k
i �

l
j �����


�
�

jDBj
�X
k��

�X
k��

aklx
k
i y

l
j �����


with

akl �

� jABj
jDBj

�k � jDCj
jDBj

�l
dkl� �����


Like the three
center case� the dkl are recursively related� but now there are two recurrence
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relations� one for increasing k� another for l�

dkl �

�
�k � �l � �

k

�
cos �xd�k���l �

�
k � �l � �

k

�
d�k���l �

�
�l � �

k

�
cos	d�k����l���

� dk�l��� �����


dkl �

�
�l � �k � �

l

�
cos �ydk�l��� �

�
l � �k � �

l

�
dk�l��� �

�
�k � �

l

�
cos	d�k����l���

� d�k���l� �����


The dkl relations are easily converted to relations for the more convenient variable akl� For

example� equation �����
 can become

� jABj
jDBj

�k � jDCj
jDBj

�l
dkl �

�
�k � �l � �

k

�� jABj
jDBj

�k��� jDCj
jDBj

�l AB �DB
jDBj� d�k���l

�
�
k � �l � �

k

� jABj�
jDBj�

� jABj
jDBj

�k��� jDCj
jDBj

�l
d�k���l �

�
�l � �

k

�
AB �DC
jDBj�� jABj

jDBj
�k��� jDCj

jDBj
�l��

d�k����l��� �
jDCj�
jDBj�

� jABj
jDBj

�k � jDCj
jDBj

�l��
dk�l���

�����


which leads to the recurrence relations

akl �

�
�k � �l � �

k

�
AB �DB
jDBj� a�k���l �

�
k � �l � �

k

� jABj�
jDBj�a�k���l

�
�

�l � �

k

�
AB �DC
jDBj� a�k����l��� �

jDCj�
jDBj�ak�l��� �����


akl �

�
�l � �k � �

l

�
DC �DB
jDBj� ak�l��� �

�
l � �k � �

l

� jDCj�
jDBj�ak�l���

�
�

�k � �

l

�
AB �DC
jDBj� a�k����l��� �

jABj�
jDBj� a�k���l� �����


This general formula is more expensive than the concentric case� but it uses no extra shell


pair information� Also �as a nice check
 if AB � � the relation reduces to the concentric

case� The above recurrence relations can also be extended to deal with higher powers of Rij

�which are needed for higher momentum ��
�m�s
� The argument below shows that only the

coe�cients are changed�



�� ��i cos �x � ��j cos �y � ��i � ��i�j cos	 � ��j

����m��
�

�X
k��

�X
l��

d
�m�
kl �ki �

l
j �����
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d
�m�
kl �

�
�k � �l � m

k

�
cos �xd

�m�
�k���l �

�
k � �l � m

k

�
d
�m�
�k���l

�
�

�l � m

k

�
cos	d

�m�
�k����l��� � d

�m�
k�l��� �����


d
�m�
kl �

�
�l � �k � m

l

�
cos �yd

�m�
k�l��� �

�
l � �k � m

l

�
d
�m�
k�l���

�
�

�k � m

l

�
cos	d

�m�
�k����l��� � d

�m�
�k���l� �����


For example� the �rst relation in the R��
ij expansion �m � �
 is

akl �

�
�k � �l � �

k

�
AB �DB
jDBj� a�k���l �

�
k � �l � �

k

� jABj�
jDBj�a�k���l

�
�

�l � �

k

�
AB �DC
jDBj� a�k����l��� �

jDCj�
jDBj�ak�l���� �����


��� Convergence Test

The resulting integral will only be accurate if the binomial expansion converges fast

enough� For the concentric case we have a rigorous error bound for the kth term� The error

introduced is of the order of the kth
plus
one term� where k is the number of terms in the

expansion� Increasing k will obviously increase the accuracy of an integral� allowing for more

of the shell
pair interactions to be calculated via this new method �provided that the two

shell
pairs are far enough apart that the point
charge approximation still holds
� But this

will also increase the cost of a calculation� Using all terms up to� and including� ninth order

has been found to be a good compromise� This will give an error of

jDCj
jDBj �

��
p

ErrorBound� �����


For the non
concentric case� the rigorous error bound is too complex to use in a compu


tation� so an error bound is estimated by

ErrorBound �

� jABj� jCDj
jDBj

���

� �����


Even if the shell
pair passes the above error
bound� jDBj must still be large enough for the

point charge approximation to be valid� This is solved with a �nal restriction� that jDBj
must be greater than some distance� chosen with the most di�use functions and the desired

accuracy in mind�
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��� Constructing Moments

It is now clear that ��
�m�s can be calculated without the expensive KBraKKet scaling�

"Moments� along the shell
pairs �the amplitude of the Gaussian multiplied by the fraction

along AB raised to each power up to the length of the expansion
 need to be constructed�

These moments can then be paired together� along with appropriate coe�cients for the power

of Rij to generate the ��
���� For higher momentum the moments need to be scaled by certain

exponents �rst�

The fraction along AB can be generated from the shell
pair data which store the expo


nents of the constituent Gaussians �� and �
�

Figure ���� The fraction along AB
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y

P �
�A� �B

� � �
�����


� B� yBA �����


yBA�� � �
 � ��A�B
 �����


y �
�

� � �
� �����


Note that the fraction from B is calculated �not A
� Allowing the moments to be calculated

via

ui �

KBraX
p��

���p

a��i���p


b�

����p � �p

p
��i

exp

� ���
� � �

jA�Bj�
	

�����


vj �

KketX
q��

���q

c��j���q
d

�

����q � �q

q��j
exp

� ���
� � �

jC�Dj�
	

�����


where i and j vary from zero to nine� The implementation in Q�Chem generates moments

only for the present class of integrals �those of the same momentum and contraction
� This

saves memory as not all moments need to be stored and only those scalings required for the
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immediate class need to be included� The one down
side is that two sets of moments have

to be calculated�

��	 Matrix Equations

The two sets of moments above form two vectors �each of length ten
 for each ��
�m��

With these� and a matrix H� whose elements are the coe�cients from the earlier expression

for Rij � we can form a much simpler matrix form for the ��
�m�s�

a�b�p���

�m�
c�d�q� �

��m� �
$$

jDBj�m��
utHv� �����


Further e�ciency is gained by forming Hv �which depends only on the ket and m
 and

then contracting the product with the necessary u� The advantage of a matrix form is that

the ��
�m�s can now be generated using BLAS
� and BLAS
� constructs� which are linear

algebra packages highly optimized for a variety of computer platforms�

��
 General Algorithm

It is helpful to present the entire �nal algorithm� The six steps involved are�

�� Construct moments� Loop over all the shell
pairs� generating moments up to and

including ninth order� with a separate set for each type of scaling required for that

type of shell
pair� Note that this part of the algorithm is only O�N
 in cost�

�� Convergence test� Loop over all kets for the present bra� �nding for which shell
pairs

the expansion will converge� and construct lists of those that pass and fail� This section

�and those that follow
 is O�N�
�

�� Find geometric parameters� Calculate the values of AB�DB
DB�DB � etc�

�� Form H from the recurrence relation� This is performed once per m value of the class�

There is a signi�cant time saving if jABj���

�� Form Hv� Required once per unique Hv product� Again there is a signi�cant time

saving if jABj���

�� Generate all ��
�m�s� until a new Hv is required�
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��� Theoretical Performance Analysis

A common way to measure the performance of integral techniques is to count the number

of �oating point operations ��ops
 required� Table ��� lists the �op count for each part of the

new algorithm� Only those �ops in the O�N�
 parts of the code are counted for any large

molecule the rest are insigni�cant� It is also assumed that A 	� B and that the bra and ket

are far apart �again this is true for the majority of shell
quartets in any large system
�

Table ���� Flop costs for each part of the ��
�m� construction

Task When Called Cost n � �� cost

Geometric constants Once �� ��

Form H Once per m value �n� � �n� � � �m ��� � �m

Generate Hv For each unique Hv n� ���

Generate utHv For each unique ��
�m� �n � � ��

Copy duplicate ��
�m�s For each duplicate � �

Note that most of the routines above have a cost depending on the length of the expansion�

n� Decreasing this length will mean fewer shell
quartets pass the convergence tests� forcing

more of the work to be done the traditional way� Thus there is a trade
o� here and n � ��

has proven to be a good compromise�

Using the above table� and how often each routine is called� a cost per class can be

calculated� This cost is usually described in terms of the primitive� half
contracted and

contracted contributions�

Cost � xK� � yK� � z� �����


where K is the degree of contraction of each of the four shells� Table ��� compares the

contraction
�rst method �CO
 described above with the fastest operator
�rst method �OC


of the COLD PRISM for the low momentum integrals�

In addition to the numbers presented in Table ���� the OC calculations require � square

root and � divides as x
type work and CO needs � square root and � divide as z
type work�

By making reasonable assumptions for the �op cost of these functions� the point at which

CO becomes faster than OC can be estimated� These cross
over points are listed in the �nal

column� The momentumless class shows the lowest CO'OC crossover� Here CO is faster

whenever K � �� making the new path extremely useful� The CO costs do grow rather fast
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Table ���� Comparison of CO and OC �op counts

CO OC

Class x y z x y z Ktot CO win

�ssjss
 � � ��� � � � ��

�psjss
 � � ���� �� � � ��

�dsjss
 � � ���� �� �� � ��

�ppjss
 � � ���� �� �� � ��

�psjps
 � � ���� �� �� � ��

�dpjss
 � � ���� �� �� � ��

�dsjps
 � � ���� �� �� � ��

�ppjps
 � � ���� �� �� � ��

�ddjss
 � � ���� �� ��� � ��

�dsjds
 � � ���� �� ��� � ��

�dpjps
 � � ���� �� ��� � ��

�dsjpp
 � � ���� �� ��� � ��

�ppjpp
 � � ���� �� ��� � ��

�dpjdp
 � � ����� ��� ���� � ��

�ddjdd
 � � ������ ��� ���� � ��

with momentum though� indicating that it will only rarely be required for classes with a

total momentum greater than �� An exception may be calculations with transition metals

and heavy main
group elements� where highly contracted d functions are used�

While �op
counts are a good guide to the performance of an algorithm� they are not

the whole story� The number of memory operations� for example� is also an important

consideration� Use of the computer�s architecture is also relevant� For these reasons it is

always important to perform a timings analysis�

���� Empirical Performance Analysis

The CO path is designed for large systems� Therefore the test "molecule� is C��� arranged

as a �x�� rectangular lattice in which adjacent atoms are ���� %A apart� The basis set used

is �
��G*� which gives ���� basis functions� The timings were carried out on an IBM model

��P Power PC workstation�
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Table ��� presents the timings data for a selection of typical classes that arise� The actual

timings are of little interest instead� the ratios between the CO and OC times are presented�

Table ���� Timing ratios for the CO and OC Paths

Class �KBra�KKet
 OC'CO Ratio

�ssjss
 ������
 ����

�ssjss
 ����
 ����

�psjss
 �����
 ����

�psjss
 ����
 ����

�ppjss
 �����
 ����

�ppjss
 ����
 ����

�dsjss
 �����
 ����

�dsjss
 ����
 ����

�dpjss
 �����
 ����

�dpjss
 ����
 ����

�ddjss
 �����
 ����

�ddjss
 ����
 ����

�psjps
 ����
 ����

�ppjps
 ����
 ����

�ppjpp
 ����
 ����

�dsjps
 ����
 ����

�dsjpp
 ����
 ����

�dpjps
 ����
 ����

�dsjds
 ����
 ����

The timings con�rm most of the trends seen in the �op
counts� CO is obviously faster

for integrals of high contraction and low momentum� For �ssjss
 with KBra � KKet � ��

it is nearly three times faster� However� as the momentum increases and the contraction

decreases� the CO advantage diminishes� until� by �ddjss
 with KBra � � and KKet � ��

CO is slightly slower� The timings overall show a slight improvement over that predicted by

�op
counts�
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���� Conclusion

This chapter presents a new path for the construction of ��
�m�s� By performing con


traction earlier than was previously possible� large savings in time can be made for highly

contracted integrals� This has the e�ect of moving previously O�N�
 work dependent on K

into an O�N
 part of the code� The algorithm also uses the BLAS matrix algebra� adding to

the e�ciency of the implementation� The CO path has been implemented in the Q�Chem

program and shows a three
fold speed up for only moderately contracted �ssjss
 integrals�

However� the new algorithm shows a steeper increase in cost with momentum than the more

traditional methods� and is seldom faster when the total momentum is greater than four�



Chapter �

The CASE Approximation

�The electrons on the nose of Professor Karplus do not interact with the electrons

on the nose of Professor Eyring	 
 Enrico Clementi �����

��� Introduction to Linear Methods

As mentioned in the previous chapter� the calculation of the ERIs is the bottleneck

for modern day SCF calculations� The central problem is that� no matter how fast these

interactions are computed� there are still O�N�
 Coulomb and Exchange interactions� which

grows just too fast for large molecules to be studied� It was shown in Chapter � that the

DFT exchange �and correlation
 terms can be computed in O�N
 work� Therefore O�N


DFT calculations are possible if the Coulomb problem �to determine the Coulomb energy of

a system of N localized distributions of charge in O�N
 work
 can be solved�

����� The Fast Multipole Method

The breakthrough was made in ���� when Greengard and Rokhlin ����#���� showed

how to compute the Coulomb energy of point charges in only linear work� Greengard�s

Fast Multipole Method �FMM
 belongs to the family of algorithms called tree codes� Tree

codes ����� acquire their speed by transforming the information about a cluster of charge

into a simpler representation which is used to compute the in�uence of the cluster on objects

at large distances�

The Fast Multipole Method begins by scaling all particles into a box with coordinate

ranges �� � � � �� � � � � �� � � � � �� to ensure numerical stability of subsequent operations� The

parent box is then divided in half along each Cartesian axis� Each child box is then further
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subdivided� forming a "computational family tree�� The number of subdivisions is chosen so

that the number of particles in the lowest level boxes is approximately independent of the

number of particles �this is required to achieve linear scaling
�

Each particle is then placed within a box on the lowest level of the tree� Any empty

boxes are removed to allow e�ciency for inhomogeneous systems� The charges of particles

within each lowest level box are then expanded in multipoles about the center of its box�

The multipole expansion of each lowest level box is then translated to the center of its parent

box via one of three special FMM operators�

The second of the FMMs operators is used for each box to transform the multipole

expansions of all well
separated boxes �those that are not nearest neighbours
 into Taylor

expansions about the center of the current box� However� only those multipole expansions

from boxes which are well
separated at the present level and not well
separated at the parent

level are interacted� The multipole expansions are also translated to Taylor expansions in the

parent box� This allows each transformation to be performed as high up the tree as possible�

In practice this pass is the bottleneck of the algorithm� yet� like all the other passes� it is

O�N
�

The third pass transforms the parent Taylor expansions down the tree to the child boxes�

so that each low
level box contains the Taylor expansion representing all well
separated

particles� The fourth pass calculates the far
�eld potential for each particle via the Taylor

representation in the particles box� A �nal pass calculates the interactions between particles

that are not well
separated at any level in the tree�

����� The Continuous Fast Multipole Method

The FMM has subsequently been applied to problems in astrophysics� plasma physics�

molecular dynamics� �uid dynamics� partial di�erential equations and numerical complex

analysis� The FMM was generalized to handle continuous distributions �forming the Contin


uous FMM� CFMM
 in ���� by White et al� ��������� after making several improvements to

the original FMM ��������� ����� The main change was the introduction of a well
separated

index� describing the distance required before interactions can be calculated via multipoles�

This index depends on the di�useness of the charge distributions involved� Over the last few

years CFMM has become a very mature algorithm� and the Q�Chem implementation is now

a highly optimized� e�cient code�
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����� ONX
 Order N Exchange

The �rst method to be able to calculate the Hartree
Fock exchange energy in only O�N


work was developed by Schwegler and Challacombe in ���� ������ It can be shown that the

one particle density matrix 
��r�� r�
 decays exponentially with jr�� r�j for one
dimensional

insulators ������ A similar behaviour for three
dimensional insulators has also been spec


ulated� Kohn ����� conjectured that� for disordered molecular systems� the density matrix

behaves as


�r�� r�
 
 e�jr��r�j�l� �jr� � r�j � �
 ����


where l is a system
speci�c parameter� This fast decay should allow the long
range exchange

matrix elements to be screened out�

This screening had not been possible previously as the o�
diagonal elements of the density

matrix were shown to decay only slowly� Schwegler and Challacombe have pointed out that

this slow decay is simply an artifact of the incomplete basis set� Thus� it was thought

reasonable to assume

Kab �

ZZ

ab�r�� r�


jr� � r�j e
�jr��r�j�l dr�dr� ����


which� with the introduction of some thresholding criteria� leads to an O�N
 algorithm for

computing the exchange matrix�

The ONX method is not without its problems however� Most importantly� it is only linear

for insulators� For non
insulators the computational time becomes the traditional O�N�
�

The algorithm is also extremely expensive compared to the CFMM �which is calculating

the Coulomb matrix
� This shows just how much harder an O�N
 exchange algorithm is

compared to the Coulomb problem�

����� The KWIK Algorithm

While CFMM is a linear method� the authors consider it an expensive O�N
 technique

and believe that there will someday be a faster method� In ���� Dombroski et al� �����

introduced the KWIK algorithm� which may become an alternative to the CFMM�

The KWIK algorithm begins by examining the Coulomb operator� which contains a

singularity at the origin and exhibits very slowly decaying long range behaviour� It was

thought that separating these two characteristics would allow easier approximation� Thus
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the separation into short
 and long
range operators�

�

r
� f�r


r
�

�� f�r


r
����


was introduced� The short
range operator should have only O�N
 signi�cant interactions�

The long
range operator is transformed into Fourier Space where it decays rapidly� and in


teractions are calculated in O�N
 work via summation over Fourier coe�cients and particles�

A separator function f�r
� which produces a rapidly decaying short
range function and a

long
range function whose Fourier Transform decays rapidly �so that the summation required

converges quickly
 is desired� Dombroski tried several forms for the separator function �����

including exp���r
� exp���r�
� tanh��r
 and erfc��r
� The decay parameter � was intro


duced so that the amount of short
 to long
range work could be tuned� Of these functions

only erfc��r
 decays Gaussianly and has a Fourier transform which decays Gaussianly�

In an attempt to �nd a more appropriate separator function� Lee et al� ����� de�ned the

ultimate separator as the one which minimizes the decay in real and Fourier space� The solu


tion is a rather complex function� expressed as either modi�ed Bessel� Hermite or parabolic

cylinder functions� This function decays asymptotically as r���� exp��r���
� slightly faster

than the Gaussian decay of erfc��r
� For practical reasons however� the erfc��r
 separator is

preferred over the Lee separator as the decay speed di�erence between the two is small and

the error function is far simpler to implement and optimize ������

The KWIK algorithm has shown promising behaviour for point charges� yet the extension

to continuous charges is still under development� Problems exist in calculating the long range

energy accurately however� it should be stressed that KWIK is still a young algorithm�

requiring much more research�

��� The CASE Approximation

Examining the KWIK erfc��r
�r separator in �gure ��� shows two distinctly contrasting

curves� The �rst is singular at the origin and decays very rapidly� The second� accounting for

the long
range behaviour of ��r� is exceptionally smooth �that is� lacking in high
frequency

components
 and �nite at the origin� If the long range operator was a �at line it would have

no e�ect on the wavefunction� only altering the total energy� Given the �atness of the long


range operator it is reasonable to assume that it is of less importance to the wavefunction

than the short
range function�
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Figure ���� Graphs of ��r� erfc�r
�r and erf�r
�r
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The CASE �Coulomb
Attenuated
Schr�odinger
Equation
 approximation is to take this

idea to its logical conclusion and completely neglect the long
range component� This seems a

drastic step to take� but it is not as preposterous as it may �rst appear� At worst it could be

viewed as a test for the short
sightedness of electrons ������ The CASE results may be strictly

only applicable to a universe where the Coulomb operator decays rapidly� yet it is possible

that they could be a useful guide to chemistry� It is well
known to chemists that molecules are

essentially non
polar over large distance scales� Therefore it is not unreasonable to expect the

attractive �nuclear
electron
 and repulsive �nuclear
nuclear and electron
electron
 Coulomb

interactions between widely separated regions of a molecule to approximately cancel� What is

required� therefore� is a way of smoothly cutting o� the long
range interaction ! something

that the erfc��r
�r function provides�

If the approximation proves to be a disaster all is not lost� as CASE can be employed as

a zeroth
order approximation upon which higher
order corrections can be constructed� The

value of CASE in its own right should be examined �rst� however�

��� The Hydrogen Atom

Whenever introducing a new approximation it is often useful to examine its performance

on the simplest model systems� Here the e�ect of CASE is investigated on the H atom� the
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attenuated Schr�odinger equation for which is

�

�

d��

dr�
�

�

r

d�

dr
�

erfc��r


r
� � E� � �� ����


With � � � CASE becomes the traditional Schr�odinger equation giving E� � ����

hartrees and ���r
 �
p
�
����

exp��r
� As � is increased the attractive nuclear
electron

contribution to the energy rapidly decreases and the total energy rises� The e�ect on the

wavefunction� however� is far less intuitive� A quantitative investigation of � is possible

through �rst
order perturbation theory�

The CASE energy and wavefunction can be expanded as

E � E� � E� � E� � � � � ����


� � �� � �� � �� � � � � ����


�� � c��
�
� � c��

�
� � � � � ����


where ��
�� ��

�� � � � are the � � � excited
state wavefunctions� This allows the �rst
order

correction to be expressed as the expectation value of the long
range operator �L �the "back


ground�


E� �

Z
��

�L�� ����


�

Z �

�
�r� exp��r
erf��r


r
exp��r
 dr ����


�
�

�
p
�

� ��� ����
 exp����
 erfc����
 �����


and the coe�cients of the �rst
order correction to the wavefunction for any � are given by

the � � � components

ck �

R
��

�L�k
�

E� �Ek
�

� �����


The �rst
order energy E� � E�� along with the exact energy� which has been obtained

using the mathematics package Mathematica ����� by solving equation ����
 numerically� are

listed in Table ��� for a selection of � values� The table shows that the energy does rise with

increasing �� What is more interesting� however� is the surprisingly close agreement between

the exact and �rst
order energies� This suggests that� at least for small � values� �� is an

excellent approximation to �� or conversely� that attenuation has only a small e�ect on the

wavefunction �� This is supported by the �rst two coe�cients c� and c�� presented in Table

���� being exceedingly small� indicating that the �rst
order correction to the wavefunction is

negligible�
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Table ���� CASE First
order perturbation theory on the H atom

� E E� � E� c� c�

� 
�������� 
�������� � �

����� 
�������� 
�������� �x���� �x����

���� 
�������� 
�������� �x���	 �x���	

��� 
�������� 
�������� �x���� �x����

��� 
�������� 
�������� �x���� �x����

��� 
�������� 
�������� �x���� �x����

This simple example above does show that CASE chemistry is not the disaster that

might have been expected� A good wavefunction is produced� thanks to the smoothness

of the background� The large magnitude of the background does� however� produce large

e�ects on the total energy under attenuation� This is in contrast to variational calculations

which usually produce a good energy from a poor wavefunction� CASE is clearly not that

useful if total energies are the goal of a calculation� yet if relative energies are the goal� it is

conceivable that there may be a systematic cancellation of error and� by virtue of an accurate

wavefunction� relative energies could be largely una�ected by the neglect of the background�

This is investigated in the next section�

��� Molecular Results

The necessary integrals to perform CASE calculations have been coded into the PRISM

algorithm ����� of the Q�Chem ����� program �see Chapter �
� In light on the results of the

previous section an attenuation parameter of � � ��� a��� is chosen�

To begin� the e�ect of CASE on the molecular orbitals of H�O is examined� The MP�'�


��G* geometry is used� The HF'�
��G* calculations using � � � and � � ��� give total

energies of 
�������� and 
�������� respectively� Thus� as expected� there is a huge e�ect

on the total energy� The MO energies are presented in Figure ���� This �gure reveals the

interesting e�ect that Coulomb attenuation raises the occupied MO energies� but has very

little e�ect on the unoccupied MOs�

The MO coe�cients of the highest
occupied �HOMO
 and lowest
unoccupied �LUMO


molecular orbitals and their energies are listed in Table ���� These MOs typify the changes

found for all the molecular orbitals on introducing attenuation� It is clear that the wavefunc
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Table ���� MO coe�cients and energies for the HOMO and LUMO of H�O using HF'�
��G*

HOMO �B�
 LUMO �A�


� � � � � ��� � � � � � ���

O ��s
 � � ������� �������

O ��s
 � � 
������� 
�������

O ��px
 � � � �

O ��py
 ������� ������� � �

O ��pz
 � � 
������� 
�������

O ��s
 � � 
������� 
�������

O ��px
 � � � �

O ��py
 ������� ������� � �

O ��pz
 � � 
������� 
�������

O ��dxx
 � � ������� �������

O ��dxy
 � � � �

O ��dyy
 � � ������� �������

O ��dxz
 � � � �

O ��dyz
 ������� ������� � �

O ��dzz
 � � ������� �������

H� ��s
 � � ������� �������

H� ��s
 � � ������� �������

H� ��s
 � � ������� �������

H� ��s
 � � ������� �������

MO energy 
������� 
������� �������� ��������
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Figure ���� Molecular orbital energies �a�u�
 for H�O using CASE HF'�
��G* �core MO not

shown
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tion is little e�ected by a small attenuation�

Given the very large changes to the total energies for the hydrogen atom and the water

molecule� it might seem unlikely that bond dissociation energies could be reproduced well�

To test this� the UHF'�
��G** potential curve of H� was scanned with and without Coulomb

attenuation� The total energies are listed in Table ���� Despite the fact that the total energies

are ��� millihartrees higher than their � � � counterparts� the di�erence is so constant over a

wide range of bond distances that the spectroscopic parameters remain e�ectively unchanged�

For example the equilibrium bond distance� re� increases from ������ to ������ %A� De falls

from ����� to ����� kJ mol�� and �e falls from ���� to ���� cm��� For this simple case at

least� the neglect of the background has meant no deterioration in bond dissociation�

With the realization that attenuation has little e�ect on the bonding of H� the next step

is to test CASE on a range of more complicated electronic structures� Table ��� presents the

atomization energies for �� �rst and second row molecules� Zero
point vibrational corrections

are not included� Again� the total energies are raised by large amounts� But there is almost

imperceptible movement in the relative �that is� atomization
 energies which are typically

�
� kJ mol��� The largest error in the set ���� kJ mol��
 occurs for LiF where the attenuated

calculation fails to capture all of the Coulombic stabilization� This is the most ionic species

of the �� molecules� so it is not surprising that CASE "fails� here as the non
polar assumption

is least valid�
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Table ���� UHF'�
��G** energies �hartrees
 of H� as a function of bond length �%A


E�R
 E�R
�E��


R � � � � � ��� � � � � � ���
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Table ���� HF'�
��G* total energies �hartrees
� atomization energies �kJ mol�� and MP�'�


��G* correlation energies �millihartrees
 of various molecules

Total Energy Atomiz� Energy Correlation Energy

Molecule � � � � � ��� � � � � � ��� � � � � � ���

H� 
������� 
������� ����� ����� 
���� 
����

H�CCH� 
�������� 
�������� ������ ������ 
����� 
�����

H�CO 
��������� 
��������� ������ ������ 
����� 
�����

H�NNH� 
��������� 
��������� ������ ������ 
����� 
�����

H�CCH� 
�������� 
�������� ������ ������ 
����� 
�����

H�COH 
��������� 
��������� ������ ������ 
����� 
�����

HCCH 
�������� 
�������� ������ ������ 
����� 
�����

HCN 
�������� 
�������� ����� ����� 
����� 
�����

HCO 
��������� 
��������� ����� ����� 
����� 
�����

HOOH 
��������� 
��������� ����� ����� 
����� 
�����

Li� 
�������� 
�������� ���� ���� 
���� 
����

LiF 
��������� 
��������� ����� ����� 
����� 
�����

LiH 
������� 
������� ����� ����� 
���� 
����

BeH 
�������� 
�������� ����� ����� 
���� 
����

CH 
�������� 
�������� ����� ����� 
���� 
����

CH��
�A�
 
�������� 
�������� ����� ����� 
����� 
�����

CH��
�B�
 
�������� 
�������� ����� ����� 
���� 
����

CH� 
�������� 
�������� ������ ������ 
����� 
�����

CH� 
�������� 
�������� ������ ������ 
����� 
�����

CN 
�������� 
�������� ����� ����� 
����� 
�����

CO 
��������� 
��������� ����� ����� 
����� 
�����

CO� 
��������� 
��������� ����� ������ 
����� 
�����

N� 
��������� 
��������� ����� ����� 
����� 
�����

NH 
�������� 
�������� ����� ����� 
����� 
�����

NH� 
�������� 
�������� ����� ����� 
����� 
�����

NH� 
�������� 
�������� ����� ����� 
����� 
�����

NO 
��������� 
��������� ����� ����� 
����� 
�����

O� 
��������� 
��������� ����� ����� 
����� 
�����
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Table ��� �continued


Total Energy Atomiz� Energy Correlation Energy

Molecule � � � � � ��� � � � � � ��� � � � � � ���

OH 
�������� 
�������� ����� ����� 
����� 
�����

OH� 
�������� 
�������� ����� ����� 
����� 
�����

F� 
��������� 
��������� 
����� 
����� 
����� 
�����

FH 
��������� 
�������� ����� ����� 
����� 
�����

While CASE was designed with Hartree
Fock in mind� given the good cancellation of

error� it may be possible to obtain useful correlation energies with the CASE integrals� The

simplest correlation method to try this with is second
order M�ller
Plesset perturbation the


ory �equation �����

� To investigate the e�ect of Coulomb attenuation on the integrals

required� orbital energies from an � � � Hartree
Fock calculation have been used� The

MP�'�
��G* correlation energy has then been calculated for each of the �� molecules above�

and is presented in the last two columns of Table ���� The numerators of equation �����


are the di�erence between two integrals which allows a cancellation of error� producing good

agreement with unattenuated calculations� The attenuated correlation calculations are sys


tematically lower than traditional values� but the di�erence is only slight in all cases� It

seems that neglect of the background is of little importance in the calculation of correlation

energies�

With the use of localized orbitals ����� and a Laplace transform ����� ���� to remove the

denominators of equation �����
� the introduction of CASE here may provide a way to lower

the scaling of MP� however� this has not been investigated here�

There are some properties for which the CASE approximation performs poorly� though�

The most severe failure is for atomic ionization energies� which are listed in Table ���� The

UHF'�
��G* ionization energies show a marked decrease with the introduction of attenu


ation� The background is important here because� for the �rst time in this chapter� there

is a distant interaction that does not cancel ! an electron is lost from the system� which

interacts with the cation that remains�

A simple estimate for this e�ect can be computed by calculating the e�ect of the �rst

correction for the background on ionization� Taking just the �rst term of the Taylor expansion
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Table ���� UHF'�
��G* total energies �hartrees
 and ionization energies �eV


Total Energy �atom
 Total Energy �cation
 Ionization Energy

Atom � � � � � ��� � � � � � ��� � � � � � ��� +

H 
������� 
������� 
������� 
������� ����� ����� ����

He 
������� 
������� 
������� 
������� ����� ����� ����

Li 
������� 
������� 
������� 
������� ���� ���� ����

Be 
�������� 
�������� 
�������� 
�������� ���� ���� ����

B 
�������� 
�������� 
�������� 
�������� ���� ���� ����

C 
�������� 
�������� 
�������� 
�������� ����� ���� ����

N 
�������� 
�������� 
�������� 
�������� ����� ����� ����

O 
�������� 
�������� 
�������� 
�������� ����� ����� ����

F 
�������� 
�������� 
�������� 
�������� ����� ����� ����

Ne 
��������� 
��������� 
��������� 
��������� ����� ����� ����

to represent the background�

erf��r


r
� ��p

�
� �����


Then the e�ect of the background on the ionization energy is that of the departing electron

interacting �via the background operator
 with the charge that remains�

IL � h
cationj ��p
�
j
electroni �����


�
��p
�
h
cationj
electroni �����


�
��p
�
� �����


which has a value of ���� eV for � � ���� in very good agreement with the values listed in

Table ����

Note that this will not be the case for electron a�nities� as the molecule that interacts

with the approaching electron is neutral� rather than charged�

��� Conclusions

This chapter presents an introduction to linear methods and the CASE approximation�

which neglects long
range Coulomb interactions by replacing the Coulomb operator with the
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erf��r
�r function� This leaves only O�N
 signi�cant Coulomb interactions �how to calculate

these interactions in only O�N
 work is covered in Chapter �
�

While Coulomb attenuation does have a major e�ect on the total energy of a system�

the wavefunction is largely una�ected� Most relative energies are also reproduced quite well�

as long as the number of particles is conserved in the reaction� Correlation energies� being

the di�erence between two integrals� are also largely una�ected� something which may allow

inexpensive correlation treatments in the future�

All of these properties can be ascribed to the blandness of the excluded background

term� giving it little chemical signi�cance� As well as being computationally useful� the

CASE approximation is a comfortable idea for chemists as it a�rms the well known idea

that the behaviour of an atom within a molecule is principally governed by its immediate

vicinity�



Chapter �

E�cient Short�Range Integrals

�There is nothing so useless as doing e�ciently that which should not be done at

all	 
 Drucker

	�� Introduction

With the realization that CASE may be a useful theory the next task is to improve the

speed of CASE integral calculations� As mentioned in the previous chapter� by attenuation

of the Coulomb operator to erfc��r
�r� the number of signi�cant Coulomb interactions grows

as only O�N
 �compared with the previous O�N�

 for a large enough system� The task of

�nding which of the O�N�
 integrals are signi�cant still needs to be accomplished with an

algorithm that is itself� at most� O�N
�

Before that is achieved the calculation of each single integral must be optimized� This

reduces to �nding the most e�cient way to build the ��
�m�s� as the various recurrence

relations described in Chapter � are the same for all two
electron integrals� regardless of

the operator used �to change an operator all that is required is to change the generation of

��
�m�s
�

This chapter presents how to calculate the short
range energy as e�ciently as possible�

It should also be pointed out that the work described in this chapter is not only useful for

CASE� but is essential for all calculations using the KWIK family of methods� as each one

requires the computation of some short
range elements�
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	�� Integral Generation

Traditional ERIs require the evaluation of the integral

I �

�
��

��

���� ZZ
e�
r

�

�

�

r��
e��jr��Rj

�

dr�dr� ����


�
�

���R�

Z �

�
u sin�u
e�u

���T��u�R
 du ����


where ��k
 is the Fourier transform of the operator� In this case

��k
 �
��

k�
����


which� proceeding in the same way as section ���� leads to

I � R�� erf

�
R�

r
�

�
�

�

�

�
� ����


Note that this is the same result as equation �����
� as the error function and G��T
 are

closely related�

G��T
 �
erf�

p
T
p

�T
� ����


However the erfc��r
�r operator requires the evaluation of

ICASE �

�
��

��

���� ZZ
e�
r

�

�

erfc��r��


r��
e��jr��Rj

�

dr�dr� ����


�
�

���R�

Z �

�
u sin�u
e�u

���T��u�R
 du ����


with

��k
 �
��

k�

�
�� e�k

�����
�

����


which produces� in e�ect� two integrals� one of which is the same as before

ICASE �
�

���R�

�Z �

�
u sin�u
e�u

���T��
R�

u�
du�

Z �

�
u sin�u
e�u

���T��
R�

u�
e�R

���u��� du

�
����


� R��

�
erf

�
R�

r
�

�
�

�

�

�
� erf

�
R�

r
�

�
�

�

�
�

�

��

��
� �����


Rearranging the above formula into a more computationally useful form gives

���
�m�
CASE � U

n

���

�m����
Gm�T
� 
�����m����

Gm�T�

o
� �����


which is very similar to the traditional ����m� formula of

����m� � U


���

�m����
Gm�T
 �����
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except for the addition of two new variables�

T� � ���R
� �����


��� � ��

�
�

�
�

�

�
�

�

��

	
� �����


Thus� computation of a CASE integral is very similar to a traditional integral� All the

traditional work of before must still be done� and in addition� �� and T� must be formed and

the interpolation Gm�T�
 must be calculated� Luckily� T and T� are always greater than

zero and� as � is real�

T� � T� �����


This is useful as it means that the interpolation table built for Gm�T
 does not need to be

extended to include Gm�T�
� With all of these features in mind it should not be surprising

if the computation of CASE integrals takes double the amount of time of the traditional

integrals� This is time that needs to be made up by the removal of insigni�cant integrals�

There is a di�erence between CASE and traditional methods� however� when the values

of T and T� become large� If T is large enough to use the classical multipole expression

mentioned in Chapter � �and T� is not large enough
� ie�

Tcrit � T �����


a computational saving can be made for one of the two parts of the CASE integral� However�

if

Tcrit � T� �� T
 �����


then� applying the Gm�T
 expansion for large T

Gm�T
 � ��m� �
$$

��T
m����
�����


to both parts of the integral yields

���
�m�
CASE � U

��m� �
$$

�m����

�

���

�m����

Tm����
�


����

�m����

T
m����
�

�
�����


� U��m� �
$$

� 

��
�m����

���R�
m����
�



���
�m����

����R
�
m����

�
�����


� �� �����
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Therefore the size of T� is a convenient way to check the signi�cance of a CASE integral�

All integrals for which Tcrit � T� do not need to be computed� The value of T� cannot be

used to �nd the signi�cant integrals unfortunately� as it requires the computation of R for

each integral� which is O�N�
 work� Another way of screening out integrals is needed� and

this is the topic of the next section�

	�� Boxing Scheme

There exist a number of O�N
 algorithms for calculating the energy due to a sum of

pair
wise short
range interactions ������ all of which involve dividing the system into cubical

boxes �or some other space
�lling shape �����
 and then interacting the contents of each box

with only those in neighbouring boxes� As the number of signi�cant interactions per particle�

M becomes O��
 when M 
 N � the algorithm scales as O�N
� The algorithm used here

is the most common in the �eld ! the standard linked
cell method ������ The additional

complexity of alternative methods is unlikely to o�er signi�cant bene�t� and the CFMM

implementation in the Q�Chem program� which uses the linked
cell method� has already

been highly optimized�

The �rst step is to determine the number of boxes in each Cartesian direction� The

sidelength of each box is taken to be the minimum distance over which two point charges�

interacting via the CASE operator is negligible� that is� the value of x when

erfc��x


x
� Desired integral accuracy� �����


which can easily be found �given � and the integral accuracy required
 using the Newton


Raphson method ������ The number of boxes in a direction is then the length of the molecule

in that direction� divided by the sidelength�

Following the CFMM� each contracted shell
pair is assigned to a box� If the contracted

shell
pair contains primitives with centers in di�erent boxes� then the contracted shell
pair

is split into two �or more
 shell
pairs� one for each box that the original shell
pair centers

straddle�

The box size above is �ne for point charges� but the CASE integrals deal with continuous

distributions� which can be much larger than the box itself� To solve this problem the

CFMM notion of a well
separated index �WS
 ������ which determines the distance above

which a distribution behaves like a point charge �to within the integral accuracy required
 was

introduced� The Coulombic interaction between two spherical Gaussian charge distributions
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can be represented �using the notation of the previous section
 as

I � R�� erf

�
R�

r
�

�
�

�

�

�
� �����


The erf factor rapidly approaches � as R grows� and the two distributions then interact as

classical point charges� Thus� the extent of a distribution is de�ned as

rext �

r
�

�
erf����� �
 �����


where � is the desired precision� A Taylor expansion is made for erf� allowing the extent to

take the simple form

rext �
�

�

r
�

�
ln��
� �����


In molecular calculations the charge is represented as a product of Gaussians� which

contain a prefactor U � dependent on the distance AB between the original shells� This can

be included in the de�nition of extent� allowing for shorter interaction distances� The extent

is thus given by

rext �
�

�

r
�

�
ln��
�AB�� �����


The WS index is then de�ned as

WS � �
lrext

l

m
�����


where l is the box size�

The boxes are then looped over� and every shell
pair of a box is interacted with the

contents of all boxes within the range WS � � multiples of the box length� This is exactly

the same as the near
�eld part of the CFMM algorithm�

	�� Integral Screening

The above boxing scheme is O�N
� yet it is still ine�cient� Figure ��� compares all those

interactions considered with those that are actually signi�cant�

With an interaction distance of R �which is WS�� for the above implementation
 a shell


pair in a box will interact with �� neighbouring interaction
boxes and the current interaction


box �where an interaction
box is de�ned as the cube of boxes with a total sidelength of

WS � �
� Thus each shell
pair will interact with all others over a volume of ��R�� Yet
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Figure ���� The signi�cant and computed interactions

R

R

P

R

only those shell
pairs within a distance R of the current point need to be calculated� This

produces a sphere of volume �
��R

��

If the e�ciency of a method is de�ned to be

� �
Number of signi�cant interactions

Number of interactions computed
� �����


then the e�ciency of the algorithm described above is only ��&$ �It should be noted that in

lower dimensions the e�ciency is greater� ��& for �D and ��& for �D
� This is an inherent

de�ciency of the linked
cell method�

There are several ways that the linked
cell method can be improved� One way is to order

all particles by an increasing co
ordinate� Then� once the inter
shell
pair di�erence in this

coordinate becomes greater than the interaction distance� interactions can be ignored� This

requires sorting work and work to check the inter
shell
pair di�erence along this coordinate�

This dramatically increases the e�ciency in lower dimensions ����& and ��& for �D and �D

respectively
� but only yields a modest ��& e�ciency for three
dimensional systems�

A second method is to change the basic cell structure� It has been suggested that the

rhombic dodecahedron and truncated octahedron be used to tessellate space ������ This

allows a better approximation of a sphere than the cubes� but the cube is almost always used

due to its geometric simplicity�

A third technique for increasing the e�ciency is to reduce the basic cell size� increasing

WS by a corresponding amount� This will allow better approximation of the sphere as the

outlying corners of the interaction cube can be completely neglected� The trouble with this

technique is that� in addition to a small amount of extra computational work� the vector loop
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lengths are drastically reduced�

A more useful compromise is to introduce a pre
screening routine� Just before looping

over all shell
pairs to be interacted with a given shell
pair� the T� values for all primitive

shell
quartets are calculated� and if all are greater than Tcrit the contracted shell
quartet

does not need to be included� and so is removed from the interaction list� Thus� after the

screening� only signi�cant interactions will remain� This does introduce extra work �the

calculated T� values are not stored for the later integral calculation
� but the possibility of

removing ��& of the integrals makes this well worthwhile�

	�� Results and Discussion

Figure ���� number of signi�cant ERIs as a function of �

0.5 1 1.5 2

2� 9

4� 9

6� 9

8� 9

Integrals

�

C	�H���
C��H��
C��H�	

x��

x��

x��

x��

The �rst aspect to examine is just how many integrals Coulomb attenuation removes�

Figure ��� shows the number of signi�cant integrals �de�ned here as greater than ����
 as a

function of � for a linear alkane �C	�H���
� a hydrogen terminated graphite sheet �C��H��


and a hydrogen terminated diamond chunk �C��H�	
� The �
���G* basis is used in all

cases� The three molecules may be characterized as one
dimensional� two
dimensional and

three
dimensional� respectively�

Examination of the alkane curve shows that extremely small attenuation has no e�ect

on the number of integrals� but once attenuation starts to remove integrals� the removal of

integrals is very e�cient and� beyond mild attenuation �� � ��� a��� 
� most of the integrals

are insigni�cant� The graphene is more compact than the the alkane and� as a result� much

larger attenuation is required before the pruning begins to take e�ect� Once the pruning has
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begun� the curve shows a similar shape to the linear alkane� with a quite rapid removal of

integrals� By � � ��� a��� only half of the original integrals remain� The e�ect of CASE on

this diamond chunk� however� is less spectacular� C��H�	 is very compact and a signi�cant

reduction in the number of integrals does not begin until large � values� Once pruning of

integrals begins� though� a similar rapid decrease in the number of integrals is observed�

Clearly� the e�ciency of CASE depends on the shape of the system� as well as the number

of atoms present�

Figure ���� Log
Log plot of signi�cant ERIs against �

-3 -2.5 -2 -1.5 -1 -0.5 0.5

21

22

23

24

ln�Integrals


ln��


C��H���
C��H��
C��H	�

The rate of decrease of the three systems is presented in Figure ��� through a log
log plot�

An integral accuracy of ���	 has been used� with some slightly larger systems� The graph

shows that� once integral removal has begun� the three
dimensional system �C��H	�
 shows

a faster rate of decrease than the two
 and one
dimensional systems� This is as expected� as

increasing � decreases the interaction distance� which� in a one
dimensional system� produces

a corresponding decrease in the number of integrals� However in a three
dimensional system�

the same decrease in interaction distance will remove the the number of integrals removed for

the one
dimensional system� raised to the third power� simply because there are now three

dimensions within which particles interact�

Figure ��� presents SGI Power
Challenge CPU times to calculate all the two
electron

integrals required for a HF'�
��G* Q�Chem calculation on a series of linear alkanes� using

� � ���� a��� and an integral cuto� of ����� The solid black curve shows the quadratic

behaviour typical of the conventional O�N�
 algorithm� Just above this lies the time for

a CASE calculation using the traditional algorithm� clearly showing the cost of an extra

interpolation� Included with these curves is the QCTC'ONX which shows an expensive
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Figure ���� HF'�
��G* timings of linear alkanes CnH�n�� with � � ����
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Screening Only
Boxing Only

No Boxing or Screening
QCTC�ONX

O�N�
 behaviour �QCTC is a linear Coulomb method� similar to the CFMM
� A direct

comparison with ONX can not really be made as the two algorithms use di�erent integral

code and di�erent screening strategies� yet the overall nature of the curve is still useful�

The poor performance of ONX is due to the high integral accuracy used� As shown later

in this section� ONX becomes more competitive at lower integral accuracy� The two near


linear curves are for CASE using integral screening� and boxing with integral screening� The

remaining curve is for boxing only� The �uctuation of this �nal curve is due to the additional

computational overhead required when previously unsplit shell
pairs now cover two boxes�

forcing the shell
pairs to be split for no computational gain� It is perhaps surprising that

integral screening� although formally O�N�
� performs better than boxing alone for these

systems� Yet the quadratic nature of this curve can just be seen� and screening will become

more expensive than boxing alone for extremely large systems� The fastest timings for large

systems are� not surprisingly� when both boxing and integral screening are used� It should

be noted though that there is a small window where screening alone is the fastest method�

Figure ��� shows the e�ect on CPU times of altering � for this same series of alkanes�

� � � is the traditional ��r code� exhibiting the expected quadratic trait� while higher �

values all show a linear behaviour� Notice that the time gained by doubling � decreases as �
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Figure ���� HF'�
��G* CASE Boxing and Screening timings of linear alkanes CnH�n��
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increases� For these systems there seems little to be gained by increasing � past ��� a��� � By

� � ��� a��� the integrals that remain involve di�use orbitals� requiring very large � values

�much larger than � a��� 
 to render them insigni�cant�

The e�ect of changing the integral accuracy �signi�cance level
 on the time to calculate

the integrals for C��H��� is presented in Figure ���� The ratio of the conventional CPU time

to each method�s time reveals that all of these methods become relatively faster when the

integral threshold is lowered� This is due to the extra chance �at the shell
quartet level


to screen out computational work based on the integral accuracy required� The greatest

increase is seen for ONX� yet with these high accuracy computations it is still poor�

Boxing and screening behave in similar ways with changes to the basis set� Figure ���

shows the the ratio of CPU times for the new CASE implementations with that of the

traditional algorithm� The more uncontracted the basis set� the faster the method relative

to the unattenuated calculation� This is a re�ection of the time taken to test each primitive

shell
pair for its T� value� If a shell
pair has only a small degree of contraction� the amount

of testing required is small� ONX shows a similar type of behaviour� which may just be

a product of the di�erent integral technology� as well as a signi�cant slow
down with the

addition of d functions� which is consistent with a delocalization of charge removing the
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Figure ���� Ratio of PRISM time to Method time for C��H��� at various integral thresholds
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Figure ���� Ratio of PRISM time to method time for C��H��� with various basis sets
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bene�ts of density screening�

Figure ���� HF'�
��G* timings for graphite and diamond chunks with � � ��� a���
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The performance of CASE on two
 and three
dimensional systems can be seen in Figure

���� The black curve is the timings for the traditional PRISM method on a series of graphite

sheets� Below this curve lie the boxing with screening and screening only curves� These

CASE curves show linear behaviour� but are not as e�cient as those for the linear alkanes�

The CASE timings for the diamond chunks however are disappointing� It is only for C��H	�

that CASE is faster� and this is just the screening� without boxing� The answer for the poor

performance lies in the physical size of the system� The largest three
dimensional structure

included �C��H	�
 is only �� a� long on its largest side� compared with �� a� for the largest

graphite sheet used �C�	H��
 and ��� a� for the largest linear alkane �C��H���
�

	�� Concluding Remarks

This chapter has presented an e�cient way to calculate the short
range Coulomb energy�

This is the �rst O�N
 implementation of the CASE approximation� allowing very fast compu


tation of CASE energies for large systems� This has been achieved through the introduction

of boxing code� similar to that of the CFMM� A further speed
up has been achieved by in


troducing a screening for signi�cant integrals� The increase in speed is heavily dependent on

the shape of the system� For modest � values� CASE represents a useful increase in speed

even for moderately
sized systems �eg� C��H���
�



E�cient Short�Range Integrals ���

The e�cient implementation of the short
range integral code is crucial for the success of

KWIK and other methods which can be viewed as providing corrections for the neglected

part of CASE theory� These corrections will allow much larger values for � thus enabling

the CASE code to run even faster�



Chapter �

Coulomb�Attenuated Exchange

Energy Density Functionals�


�� Introduction

The CASE approximation presented in the previous two chapters was introduced to

overcome the two
electron bottleneck in Hartree
Fock theory� However DFT also su�ers

from this bottleneck and so CASE DFT will also be useful� The attenuation must be done

in a consistent manner� though� The Coulomb� exchange and correlation energies all stem

from the Coulomb operator in the Sch�odinger equation and so must all be attenuated in a

systematic way�

In HF theory this balance is achieved automatically as these three energies are calculated

via the two
electron integrals� In DFT the exchange and correlation energies are determined

via density functionals� Consequently� in order to perform CASE DFT calculations� appro


priately Coulomb
attenuated density functionals need to be found�

Following the derivation of the exchange energy in Chapter � of Parr and Yang �����

the Coulomb
attenuated exchange energy may be written in terms of the �rst
order spinless

density matrix

K��
 �
�

�

ZZ
erfc��r��


r��
j
��r�� r�
j� dr�dr� ����


� �

Z �

�
s erfc��s


Z
j
��r� s
j� drds ����


�The work described in this chapter has been carried out in collaboration with Prof� John Pople
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where the co
ordinates

r �
�

�
�r� � r�
 s � r� � r� ����


have been introduced�


�� Coulomb�Attenuated Dirac Exchange Functional

As mentioned in section ���� the Dirac exchange functional is derived from the uniform

electron gas� Again following Parr and Yang� the orbitals of the UEG can be represented as

plane waves� giving the �rst
order spinless density matrix


��r� s
 � �
�r


�
sin t� t cos t

t�

	
����


where

t � kF �r
s ����


kF �r
 �
�
���
�r


����
� ����


Substitution of the UEG density matrix into equation ����
 provides a formula for the atten


uated exchange energy of the uniform electron gas�

KLSDA��
 �
�

�

�
�

�

���� Z

����r


Z �

�
erfc

�
�

kF �r


�
��sin t� t cos t
�

t�
dtdr� ����


Performing the integration over t �by parts
 gives the spin
compensated exchange functional

KLSDA��
 �
�

�

�
�

�

���� Z

����r
F

�
�

kF

�
dr ����


with the function

F �

 � �� �


�

�
�
p
� erf

�
�




�
� �
 � 
� � ��
� 
�
 exp

���


�

�	
����


which is plotted in Figure ����

The spin
polarized exchange functional can easily be derived from the spin
compensated

version� and is given by

KLSDA
� ��
 �

�

�

�
�

�

���� Z

���� �r
F

�
�

k�F

�
dr� �����


The above formula and its derivative with respect to 
 have been implemented into the

Q�Chem program� allowing the self
consistent energy can be obtained�
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Figure ���� Function F �

 as de�ned by equation ����
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By expanding the erfc function of equation ����
 as a Taylor series in � about � � � and

integrating term by term produces the small
� expansion

KLSDA
� ��
 � �

�

�
�

�

���� Z

���� �r
 dr � �N�p

�
� � � � �����


where N� is the number of electrons of that spin� This also con�rms that the attenuated

function reduces to the Dirac functional in the limit � � �� The large
� expansion is

KLSDA
� ��
 � �

���

Z

���r
 dr� �����
��

����

Z

���� dr� � � � �����


Note that the leading term here involves the integral of 
�� instead of the traditional 
����


�� Coulomb�Attenuated Exact Exchange Functional

Berkowitz ����� has shown that the density matrix for any homogeneous system can be

expanded as


���r� s
 � 
��r
� ��
�r
��r
 � 
�r
r�
�r
�
s�

��
� � � � �����


where � is a generated from the molecular spin orbitals �i�r
�

��r
 �

occX
i

jr�i�r
j�� �����
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Substituting this density matrix into equation ����
 yields an expansion for the spin
polarized

exact exchange functional

K���
 � �

���

Z

���r
 dr � �

����

Z
��
��� � jr
�j�� dr� � � � �����


Because of the � term this is not a density functional in the purest sense� however� density

functionals containing ��r
 are becoming more popular� for example a recent functional

proposed by Becke ������

Perhaps the most surprising thing to note about this new functional is that the leading

term is the same as that for the large
� expansion of the attenuated Dirac functional� Thus

the LSDA exchange approximation becomes exact when the Coulomb operator is strongly

attenuated ! even for highly inhomogeneous systems� This is a re�ection of the fact that

for extremely strong attenuation the short
sightedness of the Coulomb operator allows the

density to appear roughly constant�

A further interesting point about this new functional and the large
� expansion of the

attenuated Dirac functional is that the leading term only involves integrals of 
�� This is

very signi�cant computationally because� if a Gaussian basis set is used� the integral can be

evaluated analytically� without resorting to the numerical quadrature that is required for the

more traditional 
���� Furthermore� all the terms of the exact expansion involve powers of

the density that can be computed analytically� It should be noted that this is not the case

for the Dirac exchange expressions of the previous section�


�� The Hydrogen Atom

The simplicity of the H atom allows its exchange energy to be written in closed form�

making it the ideal model to examine the performance of the two new attenuated functionals�

The exact H atom density is


�r
 �
e��r

�
� �����


Substituting this into the exact exchange energy�

K��
 �
�

�

ZZ

�r�


erfc��r��


r��

�r�
 dr�dr� �����


and integrating out r� and r� gives

K��
 �
�

��
�
�

�

��
� �

���
�

�

���
� �

��	

�
exp

�
�

��

�
erfc

�
�

�

�
�
�

�

��
� �

���
�

�

���

�
�p
�
�

�����
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Figure ���� The Coulomb
attenuated exact and Dirac exchange energies for the H atom
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This is the upper curve of Figure ���� As would be expected� the energy decays from

the unattenuated value of ���� with increasing attenuation� The Coulomb
attenuated Dirac

exchange energy has also been calculated via equation �����
 and using Mathematica �����

to perform the r integration numerically� This is the lower curve of Figure ���� which� like

the exact functional� decays from its � � � value of ������� agreeing with the rule of thumb

that the Dirac functional underestimates exchange energies by roughly ��&� The two curves

approach each other very rapidly� suggesting that the leading terms of the large
� expansion

are particularly important� This can be seen by examining the two series with the H atom

density

KLSDA
H 
 �

����
� �

��������
� � � � �����


KH 
 �

����
� �

����
� � � � �����


con�rming that the LSDA is a surprisingly good exchange approximation for this highly

inhomogeneous system� even for rather modest values of ��
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�� Conclusion

The extension of CASE to density functional theory has been presented with the intro


duction of two attenuated density functionals� By following the original derivation of the

Dirac exchange functional� except with the CASE operator� an attenuated LSDA exchange

functional has been found�

When the Coulomb
attenuated exact and Dirac exchange functionals are expressed as

asymptotic series in �� the leading terms are identical� showing that the LSDA exchange

functional becomes exact in the high attenuation limit� Finally� if a Gaussian basis is used�

the terms of the exact expansion can be evaluated without resorting to quadrature on a grid�



Chapter �

A Family of Attenuated Coulomb

Operators

�There are many ways of going forward� but only one way of standing still�	 


Franklin D� Roosevelt

��� Introduction

Chapter � introduced the attenuated Coulomb operator and showed that� for some molec


ular properties it performs quite well� There are properties� though� for which the approx


imation is poor �for example� ionization potentials
� The obvious way to improve results

is to move the CASE operator closer to the Coulomb operator� by decreasing �� There are

other� perhaps more e�cient� ways to remove at least part of the neglected background� This

chapter presents a second way of moving towards ��r� forming the CASE�m
 approximation�

which corrects for the neglected background by approximating it as a sum of Gaussians�

These new terms are included in the short
range operator�

��� The CASE
m� Approximation

The Taylor expansion about r � � of the background is

erf��r


r
�

��p
�

�
�� ��r�

� � �$
�
��r�

� � �$
� �	r	

� � �$
� � � �

�
����


which is very similar to that of a sum of Gaussians
mX
j��

amj exp������mjr�
 �

mX
j��

�� amj�
���mjr

�

�$
�
amj�

���mjr
�

�$
� amj�

	�	mjr
	

�$
� � � � ����
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Equating the coe�cients of the powers of r leads to a system of equations in amj and �mj �

The solution of these equations will yield a sum of Gaussians which reproduce the �rst �m��

derivatives of the background at r � � for the operator�

S�r
 �
erfc��r


r
�

��p
�

m����X
j��

amj exp

�����mjr�� � ����


The solutions up to and including three Gaussians are listed in Table ���� It should be noted

that CASE��
 is the original erfc��r
�r� and that the remaining neglected term still has a

Fourier term that decays as fast as a Gaussian�

The half integer values represent the inclusion of a constant� that is� a Gaussian with

zero exponent� This will not alter the wavefunctions produced by the new operator� but it

will reduce the magnitude of the background near the origin� thus improving accuracy in

calculations where the total charge is not preserved� As can be seen in the following section�

the addition of a constant to the operator introduces negligible extra work�

Figure ���� The �rst six CASE�m
 approximations with � � �
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The �rst few CASE�m
 approximations are illustrated in Figure ���� The simplest op


erator� CASE��
� is not equal to ��r at any point� The addition of a constant produces

CASE��'�
� which is correct at the origin� but overshoots thereafter� As m increases� the

resulting CASE�m
 remain faithful to the ��r curve for longer before decaying to zero �when
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Table ���� CASE�m
 amj and �mj for m � �

m Exponent� �mj Amplitude� amj

�
� � �����������������

� ����������������� �����������������

��
� � �����������������

����������������� �����������������

� ����������������� �����������������

����������������� �����������������

��
� � �����������������

����������������� �����������������

����������������� �����������������

� ����������������� �����������������

����������������� �����������������

����������������� �����������������

��
� � �����������������

����������������� �����������������

����������������� �����������������

����������������� �����������������

� ����������������� �����������������

����������������� �����������������

����������������� �����������������

����������������� �����������������
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m is integer
 or a constant �half
integer m
� Thus� the integer approximations are lower

bounds to ��r� while the half
integer approximations are upper bounds to ��r� It should

also be noted that the higher m values produce operators that decay to an insigni�cant value

much more slowly� requiring the calculation of further integrals�

��� Addition Integrals

The introduction of these new terms to the operator necessitates the calculation of new

integrals� Firstly� the constant is not treated as a Gaussian with zero exponent as above� It

is more e�cient to treat this as a correction to the various energy matrices�

The nuclear
nuclear correction is computationally trivial� It is computed as a double sum

over the nuclei

Econst
NN �

X
AB

ZA
��amjp

�
ZB ����


with ZA and ZB representing the nuclear charges�

For the Coulomb matrix� the correction is

Jconst�� �
X
��

P��

ZZ
	��r�
	��r�


��amjp
�

	��r�
	��r�
 dr�dr� ����


�
��amjp

�

X
��

P��S��S�� ����


�
��amjNelecp

�
S�� � ����


where Nelec is the number of electrons� Thus the correction is simply the addition of a scaled

overlap matrix to the Coulomb matrix� This is formally O�N�
 as there are N� elements of

these matrices� However this is extremely fast O�N�
 work and will not be noticed for even

the largest systems currently studied� If the quadratic cost becomes a problem in the future�

advantage can be made of the sparsity of S to determine the correction in linear work�

A similar addition to the Hamiltonian matrix is required� correcting for the change in the

nuclear
electron attraction energy� The correction is

Hconst
�� �

��amjZp
�

S�� ����


where Z is the total nuclear charge� As would be expected� the nuclear
electron correction

has the same scaling as the Coulomb correction�
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The exchange matrix correction is

Kconst
�� �

X
��

P��

ZZ
	��r�
	��r�


��amjp
�

	��r�
	��r�
 dr�dr� ����


�
��amjp

�

X
��

P��S��S�� �����


�
��amjp

�
SPS �����


Matrix multiplication is formally O�N�
 ! there are N� elements to calculate� each requiring

N multiply
adds� Although� again this extremely fast work� and will not be noticed for any

systems currently calculable� If it does become a problem in the future� sparsity of S can

reduce this to O�N�
� Then� if the system is an insulator� P will be sparse� allowing linear

computation�

In order to add a constant to the Dirac DFT energy� the e�ect of a constant on the

exchange energy of the uniform electron gas must be calculated� Beginning with equation

����
 with the new operator and proceeding as before

K��
 �
�

�

ZZ �
erfc��r��


r��
�

��amjp
�

�
j
��r�� r�
j� dr�dr� �����


� ��

Z

��r
dr

�Z �

�
erfc

�
�t

kF

�
�sin t� t cos t
�

k�F t
�

dt �
��amjp

�

Z �

�

�sin t� t cos t
�

k�F t
�

dt

	
�

�����


The �rst term is the same as before� so continuing with only the second term gives

K��
const � ��

Z

��r


��amjp
�

�

�k�F
dr �����


�
�amjp

�

Z

�r
 dr �����


The Gaussian terms are again trivial for the nuclear
nuclear term� For nuclear attraction�

Coulomb and Hartree
Fock exchange terms� new two
electron integrals must be calculated�

Proceeding as before� the ERI can be represented as

ICASE �
�

���R�

Z �

�
u sin�u
e�u

���T��u�R
 du� �����


where the Fourier transform �of exp������r�
 
 required is

��k
 �
����e�k

�������

����
�����


which leads to

ICASE �
�

�
p
�����R�

Z �

�
u sin�u
 exp

�
�u�

�
�

�T
�

�

�R�����

�	
du� �����
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yielding

ICASE �

�
��

�� � ����

����

exp

�
�R��

�
�

��
�

�

����

�	
� �����


Thus the additional integrals are not as complex as those for CASE��
 allowing much faster

computation� So� although there are more integrals to calculate� they are of a more e�cient

type and hence there is a trade
o��

As before� the e�ect of the additional terms in the operator on the Dirac functional must

be determined� Beginning with the now familiar exchange energy functional

K��
addit �
�

�

ZZ
a e��

���R� j
��r�� r�
j� dr�dr� �����


and substituting in the UEG density
matrix yields

K��
addit � ��

Z

��r
dr

Z �

�
a e��

�t���k�F
�sin t� t cos t
�

t�k�F
dt �����


�
a

�
p
�

Z

�r
F

�
��

�k�F

�
dr� �����


��� Results

����� The Hydrogen Atom

As with the previous chapters� the accuracy of these new operators is �rst examined on

a simple model system� the H atom� The total energy of the hydrogen atom is equal to its

ionization energy� the worst property of those examined in Chapter �� Thus the total energy

is a good test for these new operators� Using the exact density the energy of the ground

state is

E �
��

��

Z
e�rr�e�r dr� �

�

Z
e��r

erfc��r


r
dr�

m����X
j��

��amjp
�

Z
e��mj��r�

e��r

�
dr �����
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exp


����� erfc
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m����X
j��

amj
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�

����mj
� �
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�
���mj�

��
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�����


The CASE�m
 errors for the H atom are listed in Table ��� for a variety of m and �

values� As expected� CASE��
 produces poor total energies for all of the � values listed� The

most surprising feature� however� is the dramatic improvement with CASE����
� simply a
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Table ���� CASE�m
 
 Exact energies for the ground state of the H atom

m � � ��� � � ��� � � ��� � � ��� � � ���

� �������� �������� �������� �������� ��������

�'� 
�������� 
�������� 
�������� 
�������� 
��������

� �������� �������� �������� �������� ��������

�'� 
�������� 
�������� 
�������� 
�������� 
��������

� �������� �������� �������� �������� ��������

�'� 
�������� 
�������� 
�������� 
�������� 
��������

� �������� �������� �������� �������� ��������

�'� 
�������� 
�������� 
�������� 
�������� 
��������

constant added to the operator� CASE����
 systematically overestimates the total energy

�as would be expected from a comparison with the Coulomb operator
� but the error is now

as much as two orders of magnitude smaller than CASE��
�

As m increases further the errors continue to fall� providing accurate results� especially

when � is small� Because the hydrogen atom involves only a single Coulomb potential and

CASE�integer m
 bounds ��r below and CASE�half
integer m
 bounds ��r above� the errors

are consistently positive and negative respectively� Signi�cantly� CASE�m � ���
 yields

smaller errors than CASE�m
 which is important as� computationally� they are virtually

identical�

����� Madelung Constant of NaCl

All the results for the CASE approximation presented so far are for small molecules� It

can be argued that� because these systems lack signi�cant long
range e�ects� they are not

very demanding tests of an operator which neglects long
range terms� As a more demanding

test of the approximation� CASE�m
 has been used to �nd the Madelung constant �the

potential of an ion in the �eld of all others
 of NaCl with a lattice spacing of ���� au�

This is a harsher test as the system involved is of in�nite size and the property sought

includes very long
range contributions� The exact value ����� of �������� can not be found

by straightforward summation as the convergence is too slow� However the rapid decay of

the CASE�m
 operators produces rapidly converging sums� The deviations from the exact

result for a variety of m and � values are presented in Table ����
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Table ���� CASE�m
 
 Exact values for the Madelung constant of NaCl

m � � ��� � � ��� � � ��� � � ��� � � ���

� 
�������� 
�������� 
�������� 
�������� 
��������

�'� �������� �������� �������� �������� ��������

� 
�������� �������� �������� �������� ��������

�'� 
�������� 
�������� 
�������� �������� ��������

� �������� 
�������� 
�������� �������� ��������

�'� 
�������� �������� �������� 
�������� ��������

� 
�������� 
�������� �������� 
�������� ��������

�'� �������� 
�������� 
�������� 
�������� ��������

Again the CASE��
 estimates are poor� However� as for the hydrogen atom� the errors

are markedly smaller for the higher CASE�m
 approximations� especially when � is small�

The Madelung constant results from large positive and negative Coulomb interactions� and

therefore it should not be surprising that patterns are less obvious here� One pattern that

does emerge is that the error is closely linked to the rate of decay of the operator� Those

operators which decay to insigni�cance the slowest are the most accurate� This is an expected�

though not entirely useful� property as the speed of the method is directly linked to the decay

speed� The other pattern to note is that the half
integer approximations are more accurate

than the integer values� yet they are equally demanding computationally�

��� Conclusions

This chapter has presented a second way to extend the CASE operator towards the

Coulomb operator� By the addition of Gaussian terms to the short
range operator the ne


glected background can be corrected for� The Gaussian exponents and amplitudes are chosen

to match as many derivatives as possible of the background at r � �� The accuracy of the

resulting operators is closely linked to the overall decay speed of the operator� So� while

the Gaussian corrections are not extremely useful from an accuracy perspective� they may

provide a useful way to share the short
 and long
range work in KWIK theories� which use

CASE as the short
range operator�

The addition of a constant� correcting for the magnitude of the background at r � �� is

surprisingly useful� Total energies are now overestimated� but are more accurate than before�
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This does cause some new problems� however� With the half
integer approximations� two in


�nitely separated charged moieties have a non
zero interaction energy� thus the operators can

behave in a non
physical manner� The e�ect of CASE��
 and CASE��'�
 will be examined

in the following chapter�
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E�ects of Coulomb Attenuation on

Chemical Properties

�After having spent years trying to be accurate� we must spend as many more in

discovering when and how to be inaccurate�	 
 Ambrose Bierce

���� Introduction

The various CASE approximations have been presented in the previous chapters� The

one thing that each of these chapters lacks� however� is an examination of the performance

of the approximations on a variety of chemical properties� It is useful to have an idea of

the maximum value of � permissible for each property under investigation� remembering

that the larger �� the faster the calculation� This chapter investigates the performance of

CASE on a selection of chemical properties� so that sensible choices for � can be made� This

will also be useful if� in the future� a correction for the background is calculated via the

long
range operator� as there is the opportunity to implement background corrections only

approximately� depending on the accuracy required for that property�

���� Wavefunctions

The e�ect of CASE on the wavefunction can be seen from the density matrix� Table ���

presented two typical molecular orbitals� From this it can be seen that any changes that

do occur� seem to occur in a reasonably uniform manner� Thus� an averaging of the error

across the wavefunction does not remove too much information� The RMS error from each



E�ects of Coulomb Attenuation on Chemical Properties ���

element of the density matrix� computed for a variety of molecules and � values� is listed in

Table ����� The STO
�G basis has been used throughout� To use a larger basis would allow

a small degree of linear dependence� thus providing �exibility in the density matrix where

two apparently di�erent density matrices could be represented by the same wavefunction�

Table ����� RMS Errors in the density matrix for a variety of molecules and � values

Molecule � � ���� � � ���� � � ���� � � ���� � � ���� � � ���� � � ����

H� �������� �������� �������� �������� �������� �������� ��������

CN� �������� �������� �������� �������� �������� �������� ��������

AlF� �������� �������� �������� �������� �������� �������� ��������

C�Cl� �������� �������� �������� �������� �������� �������� ��������

SiCl� �������� �������� �������� �������� �������� �������� ��������

ATP �������� �������� �������� �������� �������� �������� ��������

L
glycerate �������� �������� �������� �������� �������� �������� ��������

SO� �������� �������� �������� �������� �������� �������� ��������

CH�COCl �������� �������� �������� �������� �������� �������� ��������

C	H	 �������� �������� �������� �������� �������� �������� ��������

C�H�� �������� �������� �������� �������� �������� �������� ��������

CH�CONH� �������� �������� �������� �������� �������� �������� ��������

C�H	 �������� �������� �������� �������� �������� �������� ��������

HCOOCH� �������� �������� �������� �������� �������� �������� ��������

C�H� �������� �������� �������� �������� �������� �������� ��������

CH�SCH� �������� �������� �������� �������� �������� �������� ��������

C�H	 �������� �������� �������� �������� �������� �������� ��������

Si�H	 �������� �������� �������� �������� �������� �������� ��������

OH� �������� �������� �������� �������� �������� �������� ��������

CH� �������� �������� �������� �������� �������� �������� ��������

NH� �������� �������� �������� �������� �������� �������� ��������

SiH�
� �������� �������� �������� �������� �������� �������� ��������

SiH� �������� �������� �������� �������� �������� �������� ��������

CASE��'�
 values are not listed as this operator di�ers from CASE��
 by only a constant�

thus CASE��'�
 wavefunctions are exactly the same as CASE��
�
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As could be expected� the smallest � value produces the best wavefunction� and very

large � values produce e�ectively unusable wavefunctions� An � value of around ���� a���

seems optimal� as this generally produces a density matrix whose elements are correct to

three decimal places� The energy of a traditional calculation using such a matrix will be of

approximately microhartree accuracy�

���� Chemical Energetics

The e�ect of the CASE approximation on the properties of the large G� set ����� has

been examined� The large G� set consists of the original set mentioned earlier� supplemented

by �� atomization energies� The results for a variety of � values are listed in Table �����

Table ����� HF'�
���G* RMS Errors �kJ'mol
 for the properties of the large G� set using

CASE��
 and CASE��'�


Property � � ���� � � ���� � � ���� � � ���� � � ���� � � ���� � � ����

CASE��


Atomiz� E� ���� ���� ����� ������ ������ ������ ������

Ioniz� P� ������ ������ ������ ������ ������ ������� �������

Elec� A� ���� ����� ����� ������ ������ ������ ������

Proton A� ���� ����� ����� ����� ������ ������ ������

Total ����� ������ ������ ������ ������ ������ ������

CASE��'�


Atomiz� E� ���� ���� ����� ������ ������ ������ ������

Ioniz� P� ���� ����� ������ ������ ������� ������� �������

Elec� A� ���� ����� ����� ������ ������ ������ ������

Proton A� ���� ����� ����� ����� ������ ������ ������

Total ���� ����� ������ ������ ������ ������ �������

As expected� the RMS errors generally increase with increasing �� Extremely high �

values are nothing short of a disaster� Ionization potentials for CASE��
 are very poor�

There is a large improvement in ionization potentials using small � with the addition of a

constant term to the operator however� they are still the most di�cult property for CASE

to reproduce� As � becomes large the addition of a constant is less worthwhile� As can be

seen from Figure ����� when the operator is more rapidly decaying �that is� high �
� the
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background is better approximated without any constant for moderate values of r� Thus� for

large �� CASE��
 is better than CASE��'�
� Caution should be taken in reading too much

into the high � results of Table ����� as the errors are of the order of the magnitude of the

ionization potential� Notice that the other energy properties are una�ected by the change to

the CASE��'�
 operator�

Figure ����� Backgrounds and the constants to approximate them for � � ��� and � � ��
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Table ����� HFS'�
���G* RMS Errors �kJ'mol
 for the properties of the large G� set using

CASE��


Property � � ���� � � ���� � � ���� � � ���� � � ���� � � ���� � � ����

CASE��


Atomiz� E� ����� ����� ����� ����� ������ ������ ������

Ioniz� P� ����� ������ ������ ������ ������ ������ ������

Elec� A� ����� ������ ������ ������ ������ ������ ������

Proton A� ���� ����� ����� ����� ������ ������ ������

Total ����� ����� ������ ������ ������ ������ ������

The e�ect of CASE on HFS energetic properties is listed in table ����� The HFS results

follow a very similar pattern to HF with a gradual increase in error� Thus there is no great
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e�ect on the CASE approximation by the replacement of Fock exchange with the Dirac

density functional�

���� E�ect of Basis Set

Table ����� HF� � � ��� a��� RMS Errors �kJ'mol
 for the properties of the large G� set

using various basis sets�

Property STO
�G �
��G �
��G �
���G�d


CASE��


Atomiz� E� ����� ����� ����� ����

Ioniz� P� ������ ������ ������ ������

Elec� A� ����� ����� ����� �����

Proton A� ����� ����� ����� �����

Total ������ ������ ������ ������

CASE��'�


Ioniz� P� ����� ����� ����� �����

Total ����� ����� ����� �����

The same properties of the previous section are examined� with � �xed at ��� a��� � for a

variety of small basis sets� The results� listed in Table ����� show a remarkable constancy to

changes in basis� Due to this stability with basis� the small STO
�G basis set will be used

for the following sections�

���� Geometry Optimizations

Geometry optimizations are inherently computationally expensive� especially when many

variables are involved� To reduce the number of variables� only the bond lengths have been

optimized� This should also allow a more quantitative estimate of the e�ect of the CASE

approximation� However� to convince the reader that the equilibrium of bond angles are

a�ected in a very similar way to that of bond lengths� a simple investigation of the bond

angle in ethane �Figure ����
 has been performed�

The results� listed in Table ����� show a progressive deterioration in the bond angle as

� is increased� This deterioration is more rapid for large � values� This is a pattern very
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Figure ����� Geometry of Ethane� marking angle to be optimized
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Table ����� HF'STO
�G Bond angle ��
 of ethane

HF � � ���� � � ��� � � ���� � � ��� � � ��� � � ��� � � ���

�������� �������� �������� �������� �������� �������� �������� ��������

similar to that seen for the variety of bond lengths listed in Table �����

The numerous bonds of aspartam have been averaged over each type� So that less infor


mation is lost� the standard deviation at each value of � for the bond is presented in brackets

below the average error�

The e�ect of increasing � here shows some counter
intuitive results� For a simple system

like H�� removing all Coulomb interactions increases the bond length �and decreases the

potential well� as can be seen from the vibrational frequency in the next section
� Taking

a simpli�ed view� there is an overall Coulomb attraction between two H atoms� so it is not

surprising that attenuation reduces the attraction between the atoms� However� for more

complex systems� Table ���� shows a more complex pattern� and with so many particles

interacting it is hard to predict a pattern� The results� though� do clearly show that for

several molecules the bond lengthening changes to a bond contraction at high ��

���� Vibrational Frequencies

Vibrational frequencies� which require second derivatives of the potential surface� are a

re�ection of the quality of the optimized geometry of the molecule� The results described
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Table ����� HF'STO
�G Bond lengths �%A
 for a range of � values

CASE bond length 
 HF bond length

Bond Type HF � � ���� � � ��� � � ���� � � ��� � � ��� � � ��� � � ���

H�

H
H ������ ������ ������ ������ ������ ������ ������ ������

BeH

H
Be ������ ������ ������ ������ ������ ������ ������ ������

CH�

H
C ������ ������ ������ ������ ������ ������ ������ ������

H�O

H
O ������ ������ ������ ������ ������ ������ ������ ������

CH�SCH�

S
C ������ ������ ������ 
������ 
������ 
������ 
������ 
������

H
C ������ ������ ������ ������ ������ ������ ������ ������

CH�COCl

C
C ������ ������ ������ 
������ 
������ 
������ 
������ ������

Cl
C ������ ������ ������ ������ 
������ 
������ 
������ 
������

O
C ������ ������ ������ ������ ������ ������ ������ 
������

H
C ������ ������ ������ ������ ������ ������ ������ ������

Aspartam

C
C ���
 ������ ������ ������ 
������ 
������ 
������ 
������ 
������

�������
 �������
 �������
 �������
 �������
 �������
 �������
 �������


O
C ��
 ������ ������ ������ ������ ������ 
������ 
������ 
������

�������
 �������
 �������
 �������
 �������
 �������
 �������
 �������


N
C ��
 ������ ������ 
������ 
������ 
������ 
������ 
������ 
������

�������
 �������
 �������
 �������
 �������
 �������
 �������
 �������


H
C ���
 ������ ������ ������ ������ ������ ������ ������ ������

�������
 �������
 �������
 �������
 �������
 �������
 �������
 �������


H
N ��
 ������ ������ 
������ 
������ 
������ 
������ 
������ 
������

�������
 �������
 �������
 �������
 �������
 �������
 �������
 �������
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Table ���� �continued


CASE bond length 
 HF bond length

Bond Type HF � � ���� � � ��� � � ���� � � ��� � � ��� � � ��� � � ���

LiF

F
Li ������ ������ ������ ������ ������ 
������ 
������ 
������

CH�CH�

C
C ������ ������ ������ ������ 
������ 
������ 
������ 
������

H
C ������ ������ ������ ������ ������ ������ ������ ������

PH�
�

H
P ������ ������ ������ ������ 
������ 
������ 
������ 
������

AlF�

F
Al ������ ������ ������ ������ ������ 
������ 
������ 
������

C	H	

C
Du ������ ������ ������ ������ 
������ 
������ 
������ 
������

H
C ������ ������ ������ ������ ������ ������ ������ ������

here support this� Table ���� presents the CASE errors in the vibrational frequencies for a

range of small molecules�

The results show the now familiar pattern with the gradual decline in accuracy on increas


ing �� that becomes a more rapid decline as � gets larger as well� On the whole� frequencies

are one of the more resilient properties examined in this chapter� Considering that HF fre


quencies are typically only within about ��&� the CASE deterioration �especially for small

�
 is quite acceptable� However� frequencies generated with very large � values are extremely

unreliable� and hence results from � � ��� a��� should be treated with great scepticism�

���	 Conclusions

The e�ect of CASE on a variety of molecular properties has been examined in this chapter�

Not surprisingly� with all properties investigated� there is an increase in error with increasing

�� Wavefunctions are perhaps the best property for CASE to reproduce� With � � ���� a���

a wavefunction which reproduces the energy to within a microhartree can be generated� This

is signi�cant as it means CASE can be used for the �rst few cycles of the SCF� allowing

fast generation of the wavefunction� and then a �nal traditional �or KWIK
type
 iteration
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Table ����� HF'STO
�G Vibrational Frequencies �cm��
 for a range of � values

HF Frequency 
 CASE Frequency

HF Frequency � � ���� � � ��� � � ���� � � ��� � � ��� � � ��� � � ���

H�

������� ���� ���� ����� ����� ������ ������ ������

BeH

������� ���� ���� ����� ����� ������ ������ ������

LiF

������� ���� ���� ����� ����� 
���� 
������ 
������

CH�

������� ���� ���� ���� ����� ����� ����� 
�����

������� ���� ���� ���� ���� ����� ����� 
����

������� ���� ���� ����� ����� ����� ������ ������

������� ���� ���� ����� ����� ����� ������ ������

H�O

������� ���� ���� ���� ��� ��� 
���� 
�����

������� ���� ���� ����� ����� ������ ������ ������

������� ���� ���� ����� ����� ������ ������ ������

AlF�

������ ���� ���� ���� ���� ���� 
����� 
�����

������ ���� ���� ���� ����� ���� 
����� 
����

������ ���� ���� ���� ���� 
����� 
����� �����

������� ���� ���� ����� ����� 
���� ���� ������

NH�

������� ���� ���� ���� ���� ���� 
����� 
������

������� ���� ���� ���� ���� ����� ����� 
�����

������� ���� ���� ����� ����� ������ ������ ������

������� ���� ���� ����� ����� ������ ����� ������
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Table ���� �continued


HF Frequency 
 CASE Frequency

HF Frequency � � ���� � � ��� � � ���� � � ��� � � ��� � � ��� � � ���

C	H	

������ ���� ���� ���� ���� ���� 
����� 
�����

������ ���� ���� ���� ����� ���� ���� 
����

������ ���� ���� ���� ����� ����� 
���� 
�����

������ ���� ���� ���� ����� ����� 
���� 
�����

������� ���� ���� ����� ����� ����� ����� 
������

������� 
���� 
���� ���� ����� ����� ����� �����

������� ���� 
���
�� 
����� 
���� ���� ���� ����

������� ���� ���� 
���� ���� ����� ����� �����

������� ���� ���� ����� ����� ����� ����� 
�����

������� ���� ���� ����� 
���� 
����� 
����� 
�����

������� ���� ���� ���� 
���� 
����� 
����� 
�����

������� ���� ���� ���� ���� 
���� 
����� 
����

������� ���� ���� ���� 
���� 
������ 
������ 
������

������� ���� ���� ���� ���� ���� 
���� 
�����

������� ���� ���� ���� 
���� 
����� 
����� 
�����

������� ���� ���� ���� 
���� 
����� 
������ 
�����

������� ���� ���� ����� ����� ������ ������ �������

������� ���� ���� ����� ����� ������ ������ �������

������� ���� ���� ����� ����� ������ ������ �������

������� ���� ���� ����� ����� ������ ������ �����
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to produce an accurate energy�

To investigate chemical energetics� a more conservative � value is required� Ionization

potentials are the hardest property studied for CASE to reproduce� This is because� as

mentioned in Chapter �� ionization potentials involve removing an electron from a charged

system� and thus there is an uncancelled interaction� For small � values the addition of a

constant to the operator is very worthwhile for properties involving an uncancelled interac


tion� but the usefulness of this additional term decays with increasing � until� eventually� it

becomes disadvantageous�

The error introduced by CASE seems to be practically independent of the basis set used�

Bond lengths� at least initially� usually increase with increasing small �� The decline in

accuracy is slower than the energetic properties� and � values of ��� a��� � or even a little

higher� can be used to generate reasonable geometries�



Chapter ��

Reintroducing the Background�

�The great tragedy of science ! the slaying of a beautiful hypothesis by an ugly

fact�	 
 Thomas H� Huxley

���� Introduction

While CASE is a useful method in its own right� it may become more important as the

�rst term of an expansion allowing computation of the Coulomb energy in only O�N
 work�

At the moment there is no completely satisfactory way of wholly including the background

�in O�N
 work
� but this is an area of active research ������ This Chapter presents just a

taste of what may be available in the future� The method presented is not without serious

de�ciencies� but it is included to convince the reader that CASE can be used as a starting

point for more exact �and equally fast
 methods�

���� An Expression for EL

Applying the KWIK separator to the electron
electron Coulomb term partitions the en


ergy� as before� into short
 and long
range pieces

EJ �
�

�

�
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� ES � EL� �����


�The work described in this chapter has been carried out in collaboration with Dr Aaron Lee
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The short
range is calculated as in Chapter �� But� instead of neglecting the long
range

energy� it is estimated from the systems electronic multipole moments�

First� the long
range operator is expressed as its one
dimensional spherical Bessel trans


form

erf��r��


r��
�

�

�

Z �

�
e�k

�����j��kr��
 dk� �����


where

j��x
 � �� x�

�$
�
x�

�$
� x	

�$
� � � � �����


Interacting this operator with the density produces an expression for the long
range energy

EL �
�

�

Z �

�
e�k

�����G�k
 dk� �����


where G�k
� termed the ��ngerprint	 of the density� is de�ned as

G�k
 �
�

�
h
 jj��kr��
j 
i �����


� W� �W�
k�

�$
� W�

k�

�$
�W	

k	

�$
� � � � � �����


with W�� de�ned as

W�� �
�

�

D


���r���� ��� 
E � �����


The advantage of all this rearrangement is that Gill ����� has shown that the W�� can

be calculated in only O�N
 work from the multipole moments of the system� For example

�using the Einstein summation convention
�

W� �
�

�
M�

� ������


W� � M�Mii �MiMi ������


W� � M�Miijj � �MiMijj �MiiMjj � �MijMij ������


W	 � M�Miijjkk � �MiMijjkk � �MiiMjjkk � ��MijMijkk

� �MiijMjkk � �MijkMijk ������


where M are the Cartesian multipole moment tensors of the electron density� for example

M� �

Z

�r
 dr ������


Mi �

Z
ri
�r
 dr ������


Mij �

Z
rirj
�r
 dr ������


with ri representing the ith Cartesian component of r� These moments are trivially computed

in O�N
 work�
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���� A Gaussian Basis for G�k�

Thus� in order to calculate the long
range energy in O�N
 work all that needs to be done

is generate the electronic multipole moments� combine to form the W�� and perform the

integration in equation �����
� There is however� a problem� the W�� increase factorially�

making the series in equation �����
 only asymptotically convergent�

Equation �����
 shows that the W�� provide the derivatives of G�k
 at k � �� These

can be used to generate an approximation to G�k
 which allows the integration in equation

�����
 to be carried out� Just what basis to use to represent G�k
 is an open question� A

suitable basis must allow analytic integration of G�k
 and provide an accurate representation

of G�k
� using as few derivatives as possible� By using a sum of m Gaussians�

G�k
 � Gm�k
 �
mX
i��

Aime
��imk

�

������


the approximate function�s Taylor expansion matches that of G�k
 up to order k�m��� Ob


viously� the more Gaussians used� the more moments have to be calculated� thus increasing

the cost of the algorithm�

The coe�cients and exponents of the Gaussians are found by equating the �rst �m terms

of the Taylor expansions for G�k
 and Gm�k
� leading to a set of linear equations which are

solved for polynomial expressions of the exponents� The exponents are then found by �nding

the roots of a polynomial of order m�

Inserting this sum of Gaussians into equation �����
 and performing the integration pro


duces the rather simple expression for the long
range energy

EL �
��p
�

mX
i��

Aimp
����im � �

� ������


The higher the value of m in Gm�k
� the more accurately Gm�k
 represents G�k
� providing

a more accurate estimate for EL�

���� The Ugly Fact

Dr Aaron Lee has modi�ed the Q�Chem program to calculate the two
electron integrals

over the j��kr��
 operator� allowing the G�k
 curves to be plotted from an arbitrary density�

This curve for a pentane density is plotted in Figure ����� Superimposed on this are the �rst

few Gm�k
 approximations to it� Each successive Gm�k
 follows the exact G�k
 for longer�

before decaying to zero� G�� G�� G� and G	 have all been omitted because they possess an
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Figure ����� HF'�
���G* �ngerprint of pentane and the �rst few Gm�k
 approximations
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G��k�
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G��k�

exponential with a positive exponent� These curves follow G�k
 before rising to in�nity� This

will� unless � is small enough� produce a nonsensical result �remembering that this curve is

integrated
$ This is a major draw
back of using a sum of Gaussians as a basis function

to represent G�k
� Several basis functions have been tried� and no satisfactory answer has

yet been found� A drawback is that the basis functions chosen have to be very e�cient in

reproducing G�k
� as numerical errors become a problem for large m values�

���� Gm�k� Chemistry

Table ����� CASE Coulomb energy error for pentane �HF'�
���G*


EJ �Em
L �hartrees


m � � ��� � � ��� � � ��� � � ��� � � ��� � � ��� � � ���

� ������ ������ ������ ������� ������� ������� �������

� ������ ������ ������ ������ ������ ������ �������

� ������ ������ ������ ������ ������ ������ ������

� ������ ������ ������ 
������ ������ ������ ������
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As the purpose of this chapter is only to convince the reader of the viability of an O�N


correction for the background �and because no better basis has yet been found
� Gaussians

will be used as a basis� and calculations producing positive exponents will simply be admitted�

Table ���� presents the energies obtained from each of the Gm�k
 approximations with varying

�� As � increases� the amount of long
range work increases� and so the Gm�k
 approximation

becomes more drastic� It should be noted� though� that a large proportion of the CASE

Coulomb energy error can be regained with only a few Gaussians�

Table ����� Chemical energetics RMS errors �kJ'mol
 for Gm�k
 approximations

Property G� G� G� G� G�

�� Atomiz� E� ������ ����� ���� ���� ����

�� Ioniz� E� ������ ����� ���� ���� ���

�� Electron A� ������ ������ ����� ���� ����

� Proton A� ����� ����� ����� ���� ���

Table ���� shows the �HF'�
���G*
 atomization energy� ionization potential� electron

a�nity and proton a�nity RMS errors using G��k
 to G��k
 for a variety of small molecules

using � � ���� These are the properties of the G� set for which there were no problematic

Gaussian exponents� Note that this is a large value of �� with small m values� Even with

only �ve Gaussians most of the chemistry is reproduced�

���� Conclusions

The algorithm presented in this chapter shows a way to generate a correction for the

neglected part of a CASE calculation in only O�N
 work� by representing the long
range

energy in terms of electronic multipole moments of the system� The most straightforward

derivation generates a representation for the energy via a series that is only asymptotically

convergent� To overcome this� the series can be approximated by basis functions using

knowledge of the derivatives at the origin� Choosing just what type of basis function� however�

is still an unsolved problem� A basis function of Gaussians has been tried here and has shown

promising results� Most of the neglected energy can be recovered with only a few of these

basis functions �and hence only small order moments of the system
� Gaussians have the

serious drawback of sometimes producing a nonsensical energy through the need for positive

exponents to accurately represent G�k
�
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The most encouraging point from this chapter� though� is that even if the CASE ap


proximation proves to be unworkable in the future� the code written and methods developed

in this thesis will still be useful as they will provide the short
range energy for an O�N


Coulomb algorithm�



Chapter ��

Concluding Remarks

Novel methods for the application of Quantum Chemistry to large molecules has been

examined in this thesis� The �rst piece of research presented is a new way of examining

the quality of density functionals by partitioning the electron density� When applied to the

LSDA functional� one of the few ab initio functionals in use today� some major drawbacks

were highlighted� To make advances in DFT a more pragmatic approach is required� and

functionals of a more empirical nature should be used� This idea is taken to its logical

conclusion with the introduction of an entirely empirical density functional� EDF�� EDF�

has been speci�cally designed for a small basis set ��
���G*
 allowing application to large

molecules� EDF� is more accurate than the currently most popular functional� B�LYP� for

this basis set� One of the interesting side e�ects of this research was that the addition of

Fock exchange was of no bene�t� This is advantageous computationally as the Fock term is

very expensive�

The most time
consuming aspect of quantum chemical calculations is the generation of

the two
electron integrals� The time scaling of this has been tackled in Chapter �� Speci�cally�

the scaling with the contraction of the Gaussian basis set has been removed from the O�N�


part of the code� at the cost of a little extra �and mainly insigni�cant
 O�N
 work�

The CASE approximation has been introduced in Chapter �� CASE assumes that neutral

distributions of charge a large distance away do not interact with a charge distribution� This

is achieved by attenuating the Coulomb operator in a smooth manner� forcing the operator

to decay to insigni�cance much faster� Thus the number of signi�cant interactions grows as

only O�N
� rather than the traditional O�N�
� With the introduction of a boxing scheme

the required two
electron integrals can be computed in only O�N
 work� providing massive

computational savings�



Concluding Remarks ���

CASE can produce reasonable results� if the attenuation is not too great� It may be

especially useful in determining wavefunctions� which can then be used with the full Coulomb

operator to give accurate properties� CASE can also be viewed as a �rst order approximation�

upon which higher orders can be made� The correction for the background� although not

yet fully developed� is currently a promising route to a very fast O�N
 Coulomb method�

Research in this area is being continued by Dr Aaron Lee and Mr Nikhil Nair�
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